Novel selection for isoniazid (INH) resistance genes supports a role for NAD+-binding proteins in mycobacterial INH resistance

被引:26
作者
Chen, P
Bishai, WR
机构
[1] Johns Hopkins Univ, Sch Hyg & Publ Hlth, Dept Mol Microbiol & Immunol, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Dept Med, Div Infect Dis, Baltimore, MD 21205 USA
关键词
D O I
10.1128/IAI.66.11.5099-5106.1998
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The genetic basis of isoniazid (INH) resistance remains unknown for a significant proportion of clinical isolates. To identify genes which might confer resistance by detoxifying or sequestering INH, we transformed the Escherichia coli oxyR mutant, which is relatively sensitive to INH, with a Mycobacterium tuberculosis plasmid library and selected for INH-resistant clones. Three genes were identified and called ceo for their ability to complement the Escherichia coli oxyR mutant. ceoA was the previously identified M. tuberculosis glf gene, which encodes a 399-amino-acid NAD(+)- and flavin adenine dinucleotide-requiring enzyme responsible for catalyzing the conversion of UDP-galactopyranose to UDP-galactofuranose. The proteins encoded by the ceoBC pair were homologous,vith one another and with the N terminus of the potassium uptake regulatory protein TrkA. Each of the three Ceo proteins contains a motif common to NAD(+) binding pockets. Overexpression of the M. tuberculosis glf gene by placing it under the control of the hsp60 promoter on a multicopy plasmid in Mycobacterium bovis BCG produced a strain for which the INH MIC was increased 50% compared to that for the control strains, while similar overexpression of the ceoBC pair had no effect on INH susceptibility in BCG. Mycobacterial extracts containing the overexpressed Glf protein did not bind radiolabeled INH directly, suggesting a more complex mechanism than the binding of unmodified INH. Our results support the hypothesis that upregulated mycobacterial proteins such as Glf may contribute to INH resistance in M. tuberculosis by binding a modified form of INH or by sequestering a factor such as NAD(+) required for INH activity.
引用
收藏
页码:5099 / 5106
页数:8
相关论文
共 50 条
[31]   CHARACTERIZATION OF THE KATG AND INHA GENES OF ISONIAZID-RESISTANT CLINICAL ISOLATES OF MYCOBACTERIUM-TUBERCULOSIS [J].
ROUSE, DA ;
LI, ZM ;
BAI, GH ;
MORRIS, SL .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 1995, 39 (11) :2472-2477
[32]   Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis [J].
Rozwarski, DA ;
Grant, GA ;
Barton, DHR ;
Jacobs, WR ;
Sacchettini, JC .
SCIENCE, 1998, 279 (5347) :98-102
[33]  
Sambrook J., 1989, MOL CLONING
[34]   NAD+ BINDING TO THE ESCHERICHIA-COLI K+-UPTAKE PROTEIN TRKA AND SEQUENCE SIMILARITY BETWEEN TRKA AND DOMAINS OF A FAMILY OF DEHYDROGENASES SUGGEST A ROLE FOR NAD+ IN BACTERIAL TRANSPORT [J].
SCHLOSSER, A ;
HAMANN, A ;
BOSSEMEYER, D ;
SCHNEIDER, E ;
BAKKER, EP .
MOLECULAR MICROBIOLOGY, 1993, 9 (03) :533-543
[35]   DISPARATE RESPONSES TO OXIDATIVE STRESS IN SAPROPHYTIC AND PATHOGENIC MYCOBACTERIA [J].
SHERMAN, DR ;
SABO, PJ ;
HICKEY, MJ ;
ARAIN, TM ;
MAHAIRAS, GG ;
YUAN, Y ;
BARRY, CE ;
STOVER, CK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6625-6629
[36]   Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis [J].
Sherman, DR ;
Mdluli, K ;
Hickey, MJ ;
Arain, TM ;
Morris, SL ;
Barry, CE ;
Stover, CK .
SCIENCE, 1996, 272 (5268) :1641-1643
[37]   STRUCTURE OF THE O-ANTIGEN OF ESCHERICHIA-COLI-K-12 AND THE SEQUENCE OF ITS RFB GENE-CLUSTER [J].
STEVENSON, G ;
NEAL, B ;
LIU, D ;
HOBBS, M ;
PACKER, NH ;
BATLEY, M ;
REDMOND, JW ;
LINDQUIST, L ;
REEVES, P .
JOURNAL OF BACTERIOLOGY, 1994, 176 (13) :4144-4156
[38]   NEW USE OF BCG FOR RECOMBINANT VACCINES [J].
STOVER, CK ;
DELACRUZ, VF ;
FUERST, TR ;
BURLEIN, JE ;
BENSON, LA ;
BENNETT, LT ;
BANSAL, GP ;
YOUNG, JF ;
LEE, MH ;
HATFULL, GF ;
SNAPPER, SB ;
BARLETTA, RG ;
JACOBS, WR ;
BLOOM, BR .
NATURE, 1991, 351 (6326) :456-460
[39]   RELATIONSHIPS BETWEEN RFB GENE CLUSTERS REQUIRED FOR BIOSYNTHESIS OF IDENTICAL D-GALACTOSE-CONTAINING O ANTIGENS IN KLEBSIELLA-PNEUMONIAE SEROTYPE-O1 AND SERRATIA-MARCESCENS SEROTYPE-O-16 [J].
SZABO, M ;
BRONNER, D ;
WHITFIELD, C .
JOURNAL OF BACTERIOLOGY, 1995, 177 (06) :1544-1553
[40]   TRANSCRIPTIONAL REGULATION OF THE REDD TRANSCRIPTIONAL ACTIVATOR GENE ACCOUNTS FOR GROWTH-PHASE-DEPENDENT PRODUCTION OF THE ANTIBIOTIC UNDECYLPRODIGIOSIN IN STREPTOMYCES COELICOLOR A3(2) [J].
TAKANO, E ;
GRAMAJO, HC ;
STRAUCH, E ;
ANDRES, N ;
WHITE, J ;
BIBB, MJ .
MOLECULAR MICROBIOLOGY, 1992, 6 (19) :2797-2804