Radiative Corrections in the Boulatov-Ooguri Tensor Model: The 2-Point Function

被引:73
作者
Ben Geloun, Joseph [1 ,2 ]
Bonzom, Valentin [1 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Univ Abomey Calavi, Int Chair Math Phys & Applicat ICMPA UNESCO Chair, Cotonou, Benin
关键词
Group field theory; Renormalization; Perturbative study; DIMENSIONS;
D O I
10.1007/s10773-011-0782-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Boulatov-Ooguri tensor model generates a sum over spacetime topologies for the D-dimensional BF theory. We study here the quantum corrections to the propagator of the theory. In particular, we find that the radiative corrections at the second order in the coupling constant yield a mass renormalization. They also exhibit a divergence which cannot be balanced with a counter-term in the initial action, and which usually corresponds to the wave-function renormalization.
引用
收藏
页码:2819 / 2841
页数:23
相关论文
共 30 条
[21]  
Khersonskii V. K., 1988, Quantum Theory of Angular Momentum
[22]   Quantum corrections in the group field theory formulation of the Engle-Pereira-Rovelli-Livine and Freidel-Krasnov models [J].
Krajewski, Thomas ;
Magnen, Jacques ;
Rivasseau, Vincent ;
Tanasa, Adrian ;
Vitale, Patrizia .
PHYSICAL REVIEW D, 2010, 82 (12)
[23]   Scaling behavior of three-dimensional group field theory [J].
Magnen, Jacques ;
Noui, Karim ;
Rivasseau, Vincent ;
Smerlak, Matteo .
CLASSICAL AND QUANTUM GRAVITY, 2009, 26 (18)
[24]   TOPOLOGICAL LATTICE MODELS IN 4 DIMENSIONS [J].
OOGURI, H .
MODERN PHYSICS LETTERS A, 1992, 7 (30) :2799-2810
[25]  
Oriti D, 2009, APPROACHES TO QUANTUM GRAVITY: TOWARD A NEW UNDERSTANDING OF SPACE, TIME AND MATTER, P1, DOI 10.1017/CBO9780511575549
[26]   Encoding simplicial quantum geometry in group field theories [J].
Oriti, D. ;
Tlas, T. .
CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (13)
[27]  
ORITI D, 2010, ARXIV10105149GRQC
[28]  
Oriti D, 2009, ARXIV09122441HEPTH
[29]  
Oriti D, 2006, ARXIVGRQC0607032
[30]   ON QUANTUM GAUGE-THEORIES IN 2 DIMENSIONS [J].
WITTEN, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 141 (01) :153-209