Structural analysis of flavinylation in vanillyl-alcohol oxidase

被引:60
作者
Fraaije, MW
van den Heuvel, RHH
van Berkel, WJH
Mattevi, A
机构
[1] Univ Wageningen & Res Ctr, Biochem Lab, Dept Biomol Sci, NL-6703 HA Wageningen, Netherlands
[2] Univ Pavia, Dept Genet & Microbiol, I-27100 Pavia, Italy
关键词
D O I
10.1074/jbc.M004753200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Vanillyl-alcohol oxidase (VAO) is member of a newly recognized flavoprotein family of structurally related oxidoreductases. The enzyme contains a covalently linked FAD cofactor. To study the mechanism of flavinylation we have created a design point mutation (His-61 --> Thr). In the mutant enzyme the covalent His-C8 alpha -flavin linkage is not formed, while the enzyme is still able to bind FAD and perform catalysis. The H61T mutant displays a similar affinity for FAD and ADP (K-d = 1.8 and 2.1 muM, respectively) but does not interact with FMN. H61T is about 10-fold less active with 4-(methoxymethyl)phenol) (k(cat) = 0.24 s(-1), K-m = 40 muM) than the wild-type enzyme. The crystal structures of both the hole and apo form of H61T are highly similar to the structure of wild-type VAO, indicating that binding of FAD to the apoprotein does not require major structural rearrangements. These results show that covalent flavinylation is an autocatalytical process in which His-BI plays a crucial role by activating His-422. Furthermore, our studies clearly demonstrate that in VAO, the FAD binds via a typical lock-and-key approach to a preorganized binding site.
引用
收藏
页码:38654 / 38658
页数:5
相关论文
共 30 条
[1]  
[Anonymous], ACTA CRYSTALLOGR D
[2]  
*DINO, 1999, VIS STRUCT BIOL
[3]   Crystal structure and mechanism of CO dehydrogenase, a molybdo iron-sulfur flavoprotein containing S-selanylcysteine [J].
Dobbek, H ;
Gremer, L ;
Meyer, O ;
Huber, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (16) :8884-8889
[4]   Flavoenzymes: diverse catalysts with recurrent features [J].
Fraaije, MW ;
Mattevi, A .
TRENDS IN BIOCHEMICAL SCIENCES, 2000, 25 (03) :126-132
[5]   Covalent flavinylation is essential for efficient redox catalysis in vanillyl-alcohol oxidase [J].
Fraaije, MW ;
van den Heuvel, RHH ;
van Berkel, WJH ;
Mattevi, A .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (50) :35514-35520
[6]   Catalytic mechanism of the oxidative demethylation of 4-(methoxymethyl)phenol by vanillyl-alcohol oxidase - Evidence for formation of a p-quinone methide intermediate [J].
Fraaije, MW ;
vanBerkel, WJH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (29) :18111-18116
[7]   A novel oxidoreductase family sharing a conserved FAD-binding domain [J].
Fraaije, MW ;
Van Berkel, WJH ;
Benen, JAE ;
Visser, J ;
Mattevi, A .
TRENDS IN BIOCHEMICAL SCIENCES, 1998, 23 (06) :206-207
[8]   MECHANISMS OF FLAVOPROTEIN-CATALYZED REACTIONS [J].
GHISLA, S ;
MASSEY, V .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1989, 181 (01) :1-17
[9]   The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia [J].
Guenther B.D. ;
Sheppard C.A. ;
Tran P. ;
Rozen R. ;
Matthews R.G. ;
Ludwig M.L. .
Nature Structural Biology, 1999, 6 (4) :359-365
[10]   IMPROVED METHODS FOR BUILDING PROTEIN MODELS IN ELECTRON-DENSITY MAPS AND THE LOCATION OF ERRORS IN THESE MODELS [J].
JONES, TA ;
ZOU, JY ;
COWAN, SW ;
KJELDGAARD, M .
ACTA CRYSTALLOGRAPHICA SECTION A, 1991, 47 :110-119