Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities

被引:84
作者
Lalanne, P
Mias, S
Hugonin, JP
机构
[1] CNRS, Inst Opt, Lab Charles Fabry, F-91403 Orsay, France
[2] Univ Paris 11, F-91403 Orsay, France
来源
OPTICS EXPRESS | 2004年 / 12卷 / 03期
关键词
D O I
10.1364/OPEX.12.000458
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We identify two physical mechanisms which drastically increase the Q/V factor of photonic crystal microcavities. Both mechanisms rely on a fine tuning the geometry of the holes around the cavity defect. The first mechanism relies on engineering the mirrors in order to reduce the out-of-plane far field radiation. The second mechanism is less intuitive and relies on a pure electromagnetism effect based on transient fields at the subwave-length scale, namely a recycling of the mirror losses by radiation modes. The recycling mechanism enables the design of high-performance microresonators with moderate requirements on the mirror reflectivity. Once the geometry around the defect is optimised, both mechanisms are shown to strongly impact the Q and the Purcell factors of the microcavity. (C) 2004 Optical Society of America.
引用
收藏
页码:458 / 467
页数:10
相关论文
共 20 条
[1]   High-Q photonic nanocavity in a two-dimensional photonic crystal [J].
Akahane, Y ;
Asano, T ;
Song, BS ;
Noda, S .
NATURE, 2003, 425 (6961) :944-947
[2]   RIGOROUS SPECTRAL-ANALYSIS OF LEAKY STRUCTURES - APPLICATION TO THE PRISM COUPLING PROBLEM [J].
BENECH, P ;
KHALIL, D .
OPTICS COMMUNICATIONS, 1995, 118 (3-4) :220-226
[3]   A PERFECTLY MATCHED LAYER FOR THE ABSORPTION OF ELECTROMAGNETIC-WAVES [J].
BERENGER, JP .
JOURNAL OF COMPUTATIONAL PHYSICS, 1994, 114 (02) :185-200
[4]   Photonic-bandgap microcavities in optical waveguides [J].
Foresi, JS ;
Villeneuve, PR ;
Ferrera, J ;
Thoen, ER ;
Steinmeyer, G ;
Fan, S ;
Joannopoulos, JD ;
Kimerling, LC ;
Smith, HI ;
Ippen, EP .
NATURE, 1997, 390 (6656) :143-145
[5]   Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap [J].
Johnson, SG ;
Fan, S ;
Mekis, A ;
Joannopoulos, JD .
APPLIED PHYSICS LETTERS, 2001, 78 (22) :3388-3390
[6]   One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides [J].
Jugessur, AS ;
Pottier, P ;
De La Rue, RM .
ELECTRONICS LETTERS, 2003, 39 (04) :367-369
[7]   Fourier-modal methods applied to waveguide computational problems [J].
Lalanne, P ;
Silberstein, E .
OPTICS LETTERS, 2000, 25 (15) :1092-1094
[8]   Bloch-wave engineering for high-Q, small-V microcavities [J].
Lalanne, P ;
Hugonin, JP .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39 (11) :1430-1438
[9]   Trapping and emission of photons by a single defect in a photonic bandgap structure [J].
Noda, S ;
Chutinan, A ;
Imada, M .
NATURE, 2000, 407 (6804) :608-610
[10]   Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP [J].
Painter, OJ ;
Husain, A ;
Scherer, A ;
O'Brien, JD ;
Kim, I ;
Dapkus, PD .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1999, 17 (11) :2082-2088