A Helly theorem in weakly modular space

被引:39
作者
Bandelt, HJ
Chepoi, V
机构
[1] UNIV HAMBURG,MATH SEMINAR,D-20146 HAMBURG,GERMANY
[2] UNIV STAT MOLDOVA,CATEDRA CIBERNET MATEMAT,KISHINEV 277009,MOLDOVA
关键词
D O I
10.1016/0012-365X(95)00217-K
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The d-convex sets in a metric space are those subsets which include the metric interval between any two of its elements. Weak modularity is a certain interval property for triples of points. The d-convexity of a discrete weakly modular space X coincides with the geodesic convexity of the graph formed by the two-point intervals in X. The Helly number of such a space X turns out to be the same as the clique number of the associated graph. This result thus entails a Helly theorem for quasi-median graphs, pseudo-modular graphs, and bridged graphs.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 30 条
[1]   ON BRIDGED GRAPHS AND COP-WIN GRAPHS [J].
ANSTEE, RP ;
FARBER, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1988, 44 (01) :22-28
[2]   DISTANCE-HEREDITARY GRAPHS [J].
BANDELT, HJ ;
MULDER, HM .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (02) :182-208
[3]   PSEUDO-MEDIAN GRAPHS - DECOMPOSITION VIA AMALGAMATION AND CARTESIAN MULTIPLICATION [J].
BANDELT, HJ ;
MULDER, HM .
DISCRETE MATHEMATICS, 1991, 94 (03) :161-180
[4]   NETWORKS WITH CONDORCET SOLUTIONS [J].
BANDELT, HJ .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1985, 20 (03) :314-326
[5]   MODULAR INTERVAL SPACES [J].
BANDELT, HJ ;
VANDEVEL, M ;
VERHEUL, E .
MATHEMATISCHE NACHRICHTEN, 1993, 163 :177-201
[6]   PSEUDO-MODULAR GRAPHS [J].
BANDELT, HJ ;
MULDER, HM .
DISCRETE MATHEMATICS, 1986, 62 (03) :245-260
[7]   MEDIAN ALGEBRAS [J].
BANDELT, HJ ;
HEDLIKOVA, J .
DISCRETE MATHEMATICS, 1983, 45 (01) :1-30
[8]  
BANDELT HJ, 1991, GRAPH THEORY COMBINA, V1, P55
[9]  
BANDELT HJ, 1990, TOPICS COMBINATORICS, P65
[10]  
Chepoi V., 1989, METODY DISKRET ANAL, V49, P75