Geometrically motivated hyperbolic coordinate conditions for numerical relativity: Analysis, issues and implementations

被引:14
作者
Bona, C [1 ]
Lehner, L
Palenzuela-Luque, C
机构
[1] Univ Illes Balears, Dept Fis, E-07071 Palma de Mallorca, Spain
[2] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
来源
PHYSICAL REVIEW D | 2005年 / 72卷 / 10期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.72.104009
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We study the implications of adopting hyperbolic-driver coordinate conditions motivated by geometrical considerations. In particular, conditions that minimize the rate of change of the metric variables. We analyze the properties of the resulting system of equations and their effect when implementing excision techniques. We find that commonly used coordinate conditions lead to a characteristic structure at the excision surface where some modes are not of outflow type with respect to any excision boundary chosen inside the horizon. Thus, boundary conditions are required for these modes. Unfortunately, the specification of these conditions is a delicate issue as the outflow modes involve both gauge and main variables. As an alternative to these driver equations, we examine conditions derived from extremizing a scalar constructed from Killing's equation and present specific numerical examples.
引用
收藏
页数:15
相关论文
共 41 条
[21]   *THEOREME DEXISTENCE POUR CERTAINS SYSTEMES DEQUATIONS AUX DERIVEES PARTIELLES NON LINEAIRES [J].
FOURESBRUHAT, Y .
ACTA MATHEMATICA, 1952, 88 (03) :141-225
[23]   Symmetry-seeking spacetime coordinates [J].
Garfinkle, D ;
Gundlach, C .
CLASSICAL AND QUANTUM GRAVITY, 1999, 16 (12) :4111-4123
[24]  
HUEBNER P, GRQC9804065, P64006
[25]  
KREISS HO, COMMUNICATION, P64006
[26]   Causal differencing in ADM and conformal ADM formulations: A comparison in spherical symmetry [J].
Lehner, L ;
Huq, M ;
Garrison, D .
PHYSICAL REVIEW D, 2000, 62 (08) :1-10
[27]   Numerical relativity: a review [J].
Lehner, L .
CLASSICAL AND QUANTUM GRAVITY, 2001, 18 (17) :R25-R86
[28]   Global existence for the Einstein vacuum equations in wave coordinates [J].
Lindblad, H ;
Rodnianski, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 256 (01) :43-110
[29]   Dynamical gauge conditions for the Einstein evolution equations [J].
Lindblom, L ;
Scheel, MA .
PHYSICAL REVIEW D, 2003, 67 (12)
[30]  
Liskovets O. A., 1965, J DIFFER EQUATIONS, V1, P1308