System-engineered cartilage using poly(N-isopropylacrylamide)-grafted gelatin as in situ-formable scaffold:: In vivo performance

被引:35
作者
Ibusuki, S
Iwamoto, Y
Matsuda, T
机构
[1] Kyushu Univ, Grad Sch Med, Dept Biomed Engn, Higashi Ku, Fukuoka 8128582, Japan
[2] Kyushu Univ, Grad Sch Med, Dept Orthopaed Surg, Fukuoka 8128582, Japan
来源
TISSUE ENGINEERING | 2003年 / 9卷 / 06期
关键词
D O I
10.1089/10763270360728044
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Our previous study showed that cartilaginous tissue can be engineered in vitro with articular chondrocytes and poly(N-isopropylacrylamide)-grafted gelatin. This short-term in vivo study for cartilage repair was performed to screen a candidate method for a long-term study. In our previous in vitro study, however, two potential problems with the tissue-engineered cartilage were identified: (1) leakage of the transplant due to temperature decline and (2) concave deformation of transplant due to compressive loading. To solve these problems, we investigated in this study the usefulness of suturing with two different covering materials (periosteum or collagen film) and preculturing an engineered tissue for 2 weeks. PNIPAAm-gelatin-based engineered cartilage samples were evaluated at 5 weeks after operation by gross and microscopic examination. Leakage occurred only in specimens without precultured tissue and with a collagen film. Minimal surface deformation occurred in all specimens with precultured tissue. The score on gross examination showed that transplants with precultured tissue acquired a higher score than did the others. Histological evaluation showed a minimal foreign-body response of PNIPAAm-gelatin in all specimens and higher maturity as a cartilaginous tissue in specimens with precultured tissue. These results indicate that transplantation with precultured tissue may be a suitable method for a long-term in vivo study.
引用
收藏
页码:1133 / 1142
页数:10
相关论文
共 28 条
[1]   A biodegradable composite scaffold for cell transplantation [J].
Ameer, GA ;
Mahmood, TA ;
Langer, R .
JOURNAL OF ORTHOPAEDIC RESEARCH, 2002, 20 (01) :16-19
[2]   TREATMENT OF DEEP CARTILAGE DEFECTS IN THE KNEE WITH AUTOLOGOUS CHONDROCYTE TRANSPLANTATION [J].
BRITTBERG, M ;
LINDAHL, A ;
NILSSON, A ;
OHLSSON, C ;
ISAKSSON, O ;
PETERSON, L .
NEW ENGLAND JOURNAL OF MEDICINE, 1994, 331 (14) :889-895
[3]   AUTOLOGOUS RIB PERICHONDRIAL GRAFTS IN EXPERIMENTALLY INDUCED OSTEOCHONDRAL LESIONS IN THE SHEEP-KNEE JOINT - MORPHOLOGICAL RESULTS [J].
BRUNS, J ;
KERSTEN, P ;
LIERSE, W ;
SILBERMANN, M .
VIRCHOWS ARCHIV A-PATHOLOGICAL ANATOMY AND HISTOPATHOLOGY, 1992, 421 (01) :1-8
[4]  
Elisseeff J, 2000, J BIOMED MATER RES, V51, P164, DOI 10.1002/(SICI)1097-4636(200008)51:2<164::AID-JBM4>3.3.CO
[5]  
2-N
[6]   Transdermal photopolymerization of poly(ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage [J].
Elisseeff, J ;
Anseth, K ;
Sims, D ;
McIntosh, W ;
Randolph, M ;
Yaremchuk, M ;
Langer, R .
PLASTIC AND RECONSTRUCTIVE SURGERY, 1999, 104 (04) :1014-1022
[7]   NEOCARTILAGE FORMATION INVITRO AND INVIVO USING CELLS CULTURED ON SYNTHETIC BIODEGRADABLE POLYMERS [J].
FREED, LE ;
MARQUIS, JC ;
NOHRIA, A ;
EMMANUAL, J ;
MIKOS, AG ;
LANGER, R .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 1993, 27 (01) :11-23
[8]   BIODEGRADABLE POLYMER SCAFFOLDS FOR TISSUE ENGINEERING [J].
FREED, LE ;
VUNJAKNOVAKOVIC, G ;
BIRON, RJ ;
EAGLES, DB ;
LESNOY, DC ;
BARLOW, SK ;
LANGER, R .
BIO-TECHNOLOGY, 1994, 12 (07) :689-693
[9]   CULTURE AND GROWTH-CHARACTERISTICS OF CHONDROCYTES ENCAPSULATED IN ALGINATE BEADS [J].
GUO, JF ;
JOURDIAN, GW ;
MACCALLUM, DK .
CONNECTIVE TISSUE RESEARCH, 1989, 19 (2-4) :277-297
[10]   CHONDROCYTE BEHAVIOR IN FIBRIN GLUE IN-VITRO [J].
HOMMINGA, GN ;
BUMA, P ;
KOOT, HWJ ;
VANDERKRAAN, PM ;
VANDENBERG, WB .
ACTA ORTHOPAEDICA SCANDINAVICA, 1993, 64 (04) :441-445