The caveolin proteins

被引:383
作者
Williams, TM
Lisanti, MP
机构
[1] Albert Einstein Coll Med, Dept Mol Pharmacol, Bronx, NY 10461 USA
[2] Albert Einstein Coll Med, Albert Einstein Canc Ctr, Bronx, NY 10461 USA
关键词
D O I
10.1186/gb-2004-5-3-214
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The caveolin gene family has three members in vertebrates: caveolin-1, caveolin-2, and caveolin-3. So far, most caveolin-related research has been conducted in mammals, but the proteins have also been found in other animals, including Xenopus laevis, Fugu rubripes, and Caenorhabditis elegans. Caveolins can serve as protein markers of caveolae ('little caves'), invaginations in the plasma membrane 50-100 nanometers in diameter. Caveolins are found predominantly at the plasma membrane but also in the Golgi, the endoplasmic reticulum, in vesicles, and at cytosolic locations. They are expressed ubiquitously in mammals, but their expression levels vary considerably between tissues. The highest levels of caveolin-1 (also called caveolin, Cav-1 and VIP21) are found in terminally-differentiated cell types, such as adipocytes, endothelia, smooth muscle cells, and type I pneumocytes. Caveolin-2 (Cav-2) is colocalized and coexpressed with Cav-1 and requires Cav-1 for proper membrane targeting; the Cav-2 gene also maps to the same chromosomal region as Cav-1 (7q31.1 in humans). Caveolin-3 (Cav-3) has greater protein-sequence similarity to Cav-1 than to Cav-2, but it is expressed mainly in muscle cells, including smooth, skeletal, and cardiac myocytes. Caveolins participate in many important cellular processes, including vesicular transport, cholesterol homeostasis, signal transduction, and tumor suppression.
引用
收藏
页数:8
相关论文
共 90 条
[1]  
Arakawa R, 2000, J LIPID RES, V41, P1952
[2]   Murine SR-BI, a high density lipoprotein receptor that mediates selective lipid uptake, is N-glycosylated and fatty acylated and colocalizes with plasma membrane caveolae [J].
Babitt, J ;
Trigatti, B ;
Rigotti, A ;
Smart, EJ ;
Anderson, RGW ;
Xu, SZ ;
Krieger, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (20) :13242-13249
[3]   Two sterol regulatory element-like sequences mediate up-regulation of caveolin gene transcription in response to low density lipoprotein free cholesterol [J].
Bist, A ;
Fielding, PE ;
Fielding, CJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :10693-10698
[4]   Functions of lipid rafts in biological membranes [J].
Brown, DA ;
London, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1998, 14 :111-136
[5]   Absence of caveolin-1 sensitizes mouse skin to carcinogen-induced epidermal hyperplasia and tumor formation [J].
Capozza, F ;
Williams, TM ;
Schubert, W ;
McClain, S ;
Bouzahzah, B ;
Sotgia, F ;
Lisanti, MP .
AMERICAN JOURNAL OF PATHOLOGY, 2003, 162 (06) :2029-2039
[6]   PURIFICATION AND CHARACTERIZATION OF SMOOTH-MUSCLE CELL CAVEOLAE [J].
CHANG, WJ ;
YING, YS ;
ROTHBERG, KG ;
HOOPER, NM ;
TURNER, AJ ;
GAMBLIEL, HA ;
DEGUNZBURG, J ;
MUMBY, SM ;
GILMAN, AG ;
ANDERSON, RGW .
JOURNAL OF CELL BIOLOGY, 1994, 126 (01) :127-138
[7]   Interaction of a receptor tyrosine kinase, EGF-R, with caveolins - Caveolin binding negatively regulates tyrosine and serine/threonine kinase activities [J].
Couet, J ;
Sargiacomo, M ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (48) :30429-30438
[8]   Identification of peptide and protein ligands for the caveolin-scaffolding domain - Implications for the interaction of caveolin with caveolae-associated proteins [J].
Couet, J ;
Li, SW ;
Okamoto, T ;
Ikezu, T ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (10) :6525-6533
[9]   CAVEOLIN IS PALMITOYLATED ON MULTIPLE CYSTEINE RESIDUES - PALMITOYLATION IS NOT NECESSARY FOR LOCALIZATION OF CAVEOLIN TO CAVEOLAE [J].
DIETZEN, DJ ;
HASTINGS, WR ;
LUBLIN, DM .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (12) :6838-6842
[10]   Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice [J].
Drab, M ;
Verkade, P ;
Elger, M ;
Kasper, M ;
Lohn, M ;
Lauterbach, B ;
Menne, J ;
Lindschau, C ;
Mende, F ;
Luft, FC ;
Schedl, A ;
Haller, H ;
Kurzchalia, TV .
SCIENCE, 2001, 293 (5539) :2449-2452