The caveolin proteins

被引:383
作者
Williams, TM
Lisanti, MP
机构
[1] Albert Einstein Coll Med, Dept Mol Pharmacol, Bronx, NY 10461 USA
[2] Albert Einstein Coll Med, Albert Einstein Canc Ctr, Bronx, NY 10461 USA
关键词
D O I
10.1186/gb-2004-5-3-214
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The caveolin gene family has three members in vertebrates: caveolin-1, caveolin-2, and caveolin-3. So far, most caveolin-related research has been conducted in mammals, but the proteins have also been found in other animals, including Xenopus laevis, Fugu rubripes, and Caenorhabditis elegans. Caveolins can serve as protein markers of caveolae ('little caves'), invaginations in the plasma membrane 50-100 nanometers in diameter. Caveolins are found predominantly at the plasma membrane but also in the Golgi, the endoplasmic reticulum, in vesicles, and at cytosolic locations. They are expressed ubiquitously in mammals, but their expression levels vary considerably between tissues. The highest levels of caveolin-1 (also called caveolin, Cav-1 and VIP21) are found in terminally-differentiated cell types, such as adipocytes, endothelia, smooth muscle cells, and type I pneumocytes. Caveolin-2 (Cav-2) is colocalized and coexpressed with Cav-1 and requires Cav-1 for proper membrane targeting; the Cav-2 gene also maps to the same chromosomal region as Cav-1 (7q31.1 in humans). Caveolin-3 (Cav-3) has greater protein-sequence similarity to Cav-1 than to Cav-2, but it is expressed mainly in muscle cells, including smooth, skeletal, and cardiac myocytes. Caveolins participate in many important cellular processes, including vesicular transport, cholesterol homeostasis, signal transduction, and tumor suppression.
引用
收藏
页数:8
相关论文
共 90 条
[11]   Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo - A role for the caveolin-scaffolding domain [J].
Engelman, JA ;
Chu, C ;
Lin, A ;
Jo, H ;
Ikezu, T ;
Okamoto, T ;
Kohtz, DS ;
Lisanti, MP .
FEBS LETTERS, 1998, 428 (03) :205-211
[12]   Sequence and detailed organization of the human caveolin-1 and -2 genes located near the D7S522 locus (7q31.1) -: Methylation of a CpG island in the 5′ promoter region of the caveolin-1 gene in human breast cancer cell lines [J].
Engelman, JA ;
Zhang, XL ;
Lisanti, MP .
FEBS LETTERS, 1999, 448 (2-3) :221-230
[13]   Genes encoding human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers [J].
Engelman, JA ;
Zhang, XL ;
Lisanti, MP .
FEBS LETTERS, 1998, 436 (03) :403-410
[14]   Recombinant expression of caveolin-1 in oncogenically transformed cells abrogates anchorage-independent growth [J].
Engelman, JA ;
Wykoff, CC ;
Yasuhara, S ;
Song, KS ;
Okamoto, T ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (26) :16374-16381
[15]   Endothelial nitric oxide synthase targeting to caveolae - Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells [J].
Feron, O ;
Belhassen, L ;
Kobzik, L ;
Smith, TW ;
Kelly, RA ;
Michel, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (37) :22810-22814
[16]   Caveolae and intracellular trafficking of cholesterol [J].
Fielding, CJ ;
Fielding, PE .
ADVANCED DRUG DELIVERY REVIEWS, 2001, 49 (03) :251-264
[17]   PLASMA-MEMBRANE CAVEOLAE MEDIATE THE EFFLUX OF CELLULAR FREE-CHOLESTEROL [J].
FIELDING, PE ;
FIELDING, CJ .
BIOCHEMISTRY, 1995, 34 (44) :14288-14292
[18]   Adenovirus-mediated expression of caveolin-1 in mouse liver increases plasma high-density lipoprotein levels [J].
Frank, PG ;
Pedraza, A ;
Cohen, DE ;
Lisanti, MP .
BIOCHEMISTRY, 2001, 40 (36) :10892-10900
[19]   Limb-girdle muscular dystrophy (LGMD-1C) mutants of caveolin-3 undergo ubiquitination and proteasomal degradation -: Treatment with proteasomal inhibitors blocks the dominant negative effect of LGMD-1C mutants and rescues wild-type caveolin-3 [J].
Galbiati, F ;
Volonté, D ;
Minetti, C ;
Bregman, DB ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (48) :37702-37711
[20]   Caveolin-3 null mice show a loss of caveolae, changes in the microdomain distribution of the dystrophin-glycoprotein complex, and T-tubule abnormalities [J].
Galbiati, F ;
Engelman, JA ;
Volonte, D ;
Zhang, XL ;
Minetti, C ;
Li, MM ;
Hou, H ;
Kneitz, B ;
Edelmann, W ;
Lisanti, MP .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (24) :21425-21433