Empirical likelihood methods with weakly dependent processes

被引:273
作者
Kitamura, Y [1 ]
机构
[1] Univ Minnesota, Dept Econ, Minneapolis, MN 55455 USA
关键词
Bartlett correction; Edgeworth expansion; empirical likelihood; estimating function; generalized method of moments; nonparametric likelihood; spectral density; strong mixing; time series regression; weak dependence;
D O I
10.1214/aos/1069362388
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the method of empirical likelihood in models with weakly dependent processes. In such cases, if the likelihood function is formulated as if the data process were independent, obviously empirical likelihood fails. We propose to use empirical likelihood of blocks of observations to solve this problem in a nonparametric manner. This method of "blockwise empirical likelihood" preserves the dependence of data, and the resulting likelihood ratios can be used to construct asymptotically valid confidence intervals. We consider general estimating equations, for which an efficient estimator is derived by maximizing blockwise empirical likelihood. We also introduce "blocks-of-blocks empirical likelihood" to conduct inference for parameters of the infinite dimensional joint distribution of data; the smooth function model is used for such cases. We show that blockwise empirical likelihood of the smooth function model with weakly dependent processes is Bartlett correctable. A wide variety of problems, such as time series regressions and spectral densities, can be treated using our methodology.
引用
收藏
页码:2084 / 2102
页数:19
相关论文
共 56 条