N-doped TiO2:: Theory and experiment

被引:865
作者
Di Valentin, Cristiana
Finazzi, Emanuele
Pacchioni, Gianfranco
Selloni, Annabella
Livraghi, Stefano
Paganini, Maria Cristina
Giamello, Elio
机构
[1] Univ Milan, Dipartimento Sci Mat, I-20125 Milan, Italy
[2] Princeton Univ, Dept Chem, Princeton, NJ 08540 USA
[3] Univ Turin, IFM, Dipartimento Chim, I-10125 Turin, Italy
[4] Nanostruct Interfaces & Surfaces Ctr Excellence, I-10125 Turin, Italy
关键词
TiO2; doping; nitrogen; EPR; experiments; DFT; theory; oxygen vacancy; photocatalysis; vis-light;
D O I
10.1016/j.chemphys.2007.07.020
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nitrogen doped titanium dioxide is attracting a continuously increasing attention because of its potential as material for environmental photocatalysis. In this paper we review experimental and theoretical work done on this system in our groups in recent years. The analysis is largely based on electron paramagnetic resonance (EPR) spectra and on their interpretation based on high-level ab initio calculations. N-doped anatase TiO2 contains thermally stable single N-atom impurities either as charged diamagnetic N-b(-) centers or as neutral paramagnetic N-b(.) centers (b stays for bulk). The N-atoms can occupy both interstitial or substitutional positions in the solid, with some evidence for a preference for interstitial sites. All types of N-b centers give rise to localized states in the band-gap of the oxide, thus accounting for the related reduction of absorption band edge. The relative abundance of these species depends on the oxidation state of the solid. In fact, upon reduction, oxygen vacancies form and transfer electrons from Ti3+ ions to the N-b(.) with formation of Ti4+ and N-b(.). EPR spectra measured under irradiation show that the Nb centers are responsible for visible light absorption with promotion of electrons from the localized N-impurity states to the conduction band or to electron scavengers like O-2 adsorbed on the surface. These results provide an unambiguous characterization of the electronic states associated with N-impurities in TiO2 and a realistic picture of the processes occurring in the solid under irradiation with visible light. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 56
页数:13
相关论文
共 58 条
[1]   Enhanced photocatalytic activity of zeolite-encapsulated TiO2 clusters by complexation with organic additives and N-doping [J].
Alvaro, M ;
Carbonell, E ;
Fornés, V ;
García, H .
CHEMPHYSCHEM, 2006, 7 (01) :200-205
[2]   Preparation, characterization, and reactivities of highly functional titanium oxide-based photocatalysts able to operate under UV-visible light irradiation: Approaches in realizing high efficiency in the use of visible light [J].
Anpo, M .
BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2004, 77 (08) :1427-1442
[3]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[4]   Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase -: art. no. 026103 [J].
Batzill, M ;
Morales, EH ;
Diebold, U .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)
[5]   DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE [J].
BECKE, AD .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (07) :5648-5652
[6]   Light-induced charge separation in anatase TiO2 particles [J].
Berger, T ;
Sterrer, M ;
Diwald, O ;
Knözinger, E ;
Panayotov, D ;
Thompson, TL ;
Yates, JT .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (13) :6061-6068
[7]   UNIFIED APPROACH FOR MOLECULAR-DYNAMICS AND DENSITY-FUNCTIONAL THEORY [J].
CAR, R ;
PARRINELLO, M .
PHYSICAL REVIEW LETTERS, 1985, 55 (22) :2471-2474
[8]   Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles [J].
Chen, XB ;
Burda, C .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (40) :15446-15449
[9]   Theory of carbon doping of titanium dioxide [J].
Di Valentin, C ;
Pacchioni, G ;
Selloni, A .
CHEMISTRY OF MATERIALS, 2005, 17 (26) :6656-6665
[10]   Characterization of paramagnetic species in N-doped TiO2 powders by EPR spectroscopy and DFT calculations [J].
Di Valentin, C ;
Pacchioni, G ;
Selloni, A ;
Livraghi, S ;
Giamello, E .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (23) :11414-11419