Large deviations of divergence measures on partitions

被引:31
作者
Beirlant, J
Devroye, L
Györfi, L
Vajda, I
机构
[1] Katholieke Univ Leuven, Dept Math, B-3000 Louvain, Belgium
[2] McGill Univ, Sch Comp Sci, Montreal, PQ H3A 2K6, Canada
[3] Tech Univ Budapest, Dept Comp Sci & Informat Theory, H-1521 Budapest, Hungary
[4] Acad Sci Czech Republic, Inst Informat Theory & Automat, CZ-18208 Prague, Czech Republic
关键词
large deviations; partitions; goodness-of-fit; total variation; I-divergence; chi(2)-divergence; Bahadur exact slope;
D O I
10.1016/S0378-3758(00)00202-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We discuss Chernoff-type large deviation results for the total variation, the I-divergence errors, and the chi (2)-divergence errors on partitions. In contrast to the total variation and the I-divergence, the chi (2)-divergence has an unconventional large deviation rate. Applications to Bahadur efficiencies of goodness-of-fit tests based on these divergence measures for multivariate observations are given. (C) 2001 Elsevier Science B.V. All rights reserved. MSG: 62G10.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 29 条
[1]  
ALI SM, 1966, J ROY STAT SOC B, V28, P131
[2]  
[Anonymous], 1995, ASYMPTOTIC EFFICIENC
[3]  
Bahadur Raghu Raj, 1971, SOME LIMIT THEOREMS
[4]   UNIFORMLY POWERFUL GOODNESS OF FIT TESTS [J].
BARRON, AR .
ANNALS OF STATISTICS, 1989, 17 (01) :107-124
[5]   On the L1-error in histogram density estimation:: The multidimensional case [J].
Beirlant, J ;
Gyorfi, L .
JOURNAL OF NONPARAMETRIC STATISTICS, 1998, 9 (02) :197-216
[6]   ON THE ASYMPTOTIC NORMALITY OF THE L(1)-ERRORS AND L(2)-ERRORS IN HISTOGRAM DENSITY-ESTIMATION [J].
BEIRLANT, J ;
GYORFI, L ;
LUGOSI, G .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1994, 22 (03) :309-318
[7]  
Csiszar I, 1967, STUD SCI MATH HUNG, V2, P299
[8]  
CSISZAR I, 1981, INFORMATION THEORY C
[9]  
DEMBO A, 1992, LARGE DEVITIONS TECH
[10]  
Devroye L., 1996, A probabilistic theory of pattern recognition