Traveling waves in a reaction-diffusion system: Diffusion with finite velocity and Kolmogorov-Petrovskii-Piskunov kinetics

被引:45
作者
Fedotov, S [1 ]
机构
[1] UMIST, Dept Math, Manchester M60 1QD, Lancs, England
[2] Potsdam Inst Climate Impact Res, PIK, D-14412 Potsdam, Germany
来源
PHYSICAL REVIEW E | 1998年 / 58卷 / 04期
关键词
D O I
10.1103/PhysRevE.58.5143
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An asymptotic method is presented for the analysis of the traveling waves in the one-dimensional reaction-diffusion-system with the diffusion with a finite velocity and Kolmogorov-Petrovskii-Piskunov kinetics. The analysis makes use of the path-integral approach, scaling procedure, and the singular perturbation techniques involving the large deviations theory for the Poisson random walk. The exact formula for the position and speed of reaction front is derived. It is found that the reaction front dynamics is formally associated with the relativistic Hamiltonian/Lagrangian mechanics. [S1063-651X(98)14710-4].
引用
收藏
页码:5143 / 5145
页数:3
相关论文
共 22 条
[1]  
[Anonymous], 1986, REACTION DIFFUSION E
[2]   PATH-INTEGRAL SOLUTIONS OF WAVE-EQUATIONS WITH DISSIPATION [J].
DEWITTMORETTE, C ;
FOONG, SK .
PHYSICAL REVIEW LETTERS, 1989, 62 (19) :2201-2204
[3]   Upper bounds for the reaction front in d-dimensional turbulent flow [J].
Fedotov, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (20) :L517-L521
[4]   Scaling and renormalization for the Kolmogorov-Petrovskii-Piskunov equation with turbulent convection [J].
Fedotov, S .
PHYSICAL REVIEW E, 1997, 55 (03) :2750-2756
[5]   RENORMALIZATION FOR REACTION-FRONT PROPAGATION IN A FULLY-DEVELOPED TURBULENT SHEAR-FLOW [J].
FEDOTOV, SP .
PHYSICAL REVIEW E, 1995, 52 (04) :3835-3839
[6]   POISSON RANDOM-WALK FOR SOLVING WAVE-EQUATIONS [J].
FOONG, SK ;
VAN KOLCK, U .
PROGRESS OF THEORETICAL PHYSICS, 1992, 87 (02) :285-292
[7]  
FREIDLIN M, 1992, LECT NOTES MATH, V1527
[8]  
Freidlin M., 1985, FUNCTIONAL INTEGRATI
[9]   WEAK NOISE LIMIT OF FOKKER-PLANCK MODELS AND NONDIFFERENTIABLE POTENTIALS FOR DISSIPATIVE DYNAMICAL-SYSTEMS [J].
GRAHAM, R ;
TEL, T .
PHYSICAL REVIEW A, 1985, 31 (02) :1109-1122
[10]   LAGRANGEAN FOR CLASSICAL FIELD DYNAMICS AND RENORMALIZATION GROUP CALCULATIONS OF DYNAMICAL CRITICAL PROPERTIES [J].
JANSSEN, HK .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1976, 23 (04) :377-380