Scaling and universality in continuous length combinatorial optimization

被引:17
作者
Aldous, D
Percus, AG [1 ]
机构
[1] Los Alamos Natl Lab, Comp & Computat Sci Div, Los Alamos, NM 87545 USA
[2] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
D O I
10.1073/pnas.1635191100
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider combinatorial optimization problems defined over rancom ensembles and study how solution cost increases when the optimal solution undergoes a small perturbation S. For the minimum spanning tree, the increase in cost scales as delta(2). For the minimum matching and traveling salesman problems in dimension d greater than or equal to 2, the increase scales as delta(3); this is observed in Monte Carlo Simulations in d = 2, 3, 4 and in theoretical analysis of a mean-field model. We speculate that the scaling exponent could serve to classify combinatorial optimization problems of this general kind into a small number of distinct categories, similar to universality classes in statistical physics.
引用
收藏
页码:11211 / 11215
页数:5
相关论文
共 27 条
[1]   The ζ(2) limit in the random assignment problem [J].
Aldous, DJ .
RANDOM STRUCTURES & ALGORITHMS, 2001, 18 (04) :381-418
[2]  
ALDOUS DJ, 2004, IN PRESS PROBABILITY
[3]  
[Anonymous], P CAMB PHILO SOC, DOI DOI 10.1017/S0305004100034095
[4]  
Cerf NJ, 1997, J PHYS I, V7, P117, DOI 10.1051/jp1:1997129
[5]  
Coppersmith D, 2003, SIAM PROC S, P364
[6]  
Dotsenko V., 2001, INTRO REPLICA THEORY, DOI DOI 10.1017/CBO9780511524592
[7]   Very rapid mixing of the Glauber dynamics for proper colorings on bounded-degree graphs [J].
Dyer, M ;
Greenhill, C ;
Molloy, M .
RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (01) :98-114
[8]  
Evans W, 2000, ANN APPL PROBAB, V10, P410
[9]  
Gutin G., 2002, TRAVELING SALESMAN P
[10]   OPTIMIZATION BY SIMULATED ANNEALING [J].
KIRKPATRICK, S ;
GELATT, CD ;
VECCHI, MP .
SCIENCE, 1983, 220 (4598) :671-680