Microbial electrocatalysis with Geobacter sulfurreducens biofilm on stainless steel cathodes

被引:117
作者
Dumas, Claire [1 ]
Basseguy, Regine [1 ]
Bergel, Alain [1 ]
机构
[1] CNRS, INPT, Lab Genie Chim, F-31106 Toulouse, France
关键词
Geobacter sulfurreducens; biofilm; biocathodes; stainless steel; microbial fuel cell;
D O I
10.1016/j.electacta.2007.10.018
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Stainless steel and graphite electrodes were individually addressed and polarized at -0.60 V vs. Ag/AgCl in reactors filled with a growth medium that contained 25 mM fumarate as the electron acceptor and no electron donor, in order to force the microbial cells to use the electrode as electron source. When the reactor was inoculated with Geobacter sulfurreducens, the current increased and stabilized at average values around 0.75 A m(-2) for graphite and 20.5 A m(-2) for stainless steel. Cyclic voltammetry performed at the end of the experiment indicated that the reduction started at around -0.30 V vs. Ag/AgCl on stainless steel. Removing the biofilm formed on the electrode surface made the current totally disappear, confirming that the G. sit sulfurreducens biofilm was fully responsible for the electrocatalysis of fumarate reduction. Similar current densities were recorded when the electrodes were polarized after being kept in open circuit for several days. The reasons for the bacteria presence and survival on non-connected stainless steel coupons were discussed. Chronoamperometry experiments performed at different potential values suggested that the biofilm-driven catalysis was controlled by electrochemical kinetics. The high current density obtained, quite close to the redox potential of the fumarate/succinate couple, presents stainless steel as a remarkable material to support biocathodes. (c) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2494 / 2500
页数:7
相关论文
共 20 条
[1]  
AFKAR E, 2005, BMC MICROBIOL, P5
[2]   Catalysis of oxygen reduction in PEM fuel cell by seawater biofilm [J].
Bergel, A ;
Féron, D ;
Mollica, A .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (09) :900-904
[3]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555
[4]   Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms [J].
Gorby, Yuri A. ;
Yanina, Svetlana ;
McLean, Jeffrey S. ;
Rosso, Kevin M. ;
Moyles, Dianne ;
Dohnalkova, Alice ;
Beveridge, Terry J. ;
Chang, In Seop ;
Kim, Byung Hong ;
Kim, Kyung Shik ;
Culley, David E. ;
Reed, Samantha B. ;
Romine, Margaret F. ;
Saffarini, Daad A. ;
Hill, Eric A. ;
Shi, Liang ;
Elias, Dwayne A. ;
Kennedy, David W. ;
Pinchuk, Grigoriy ;
Watanabe, Kazuya ;
Ishii, Shun'ichi ;
Logan, Bruce ;
Nealson, Kenneth H. ;
Fredrickson, Jim K. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2006, 103 (30) :11358-11363
[5]   Remediation and recovery of uranium from contaminated subsurface environments with electrodes [J].
Gregory, KB ;
Lovley, DR .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2005, 39 (22) :8943-8947
[6]   Graphite electrodes as electron donors for anaerobic respiration [J].
Gregory, KB ;
Bond, DR ;
Lovley, DR .
ENVIRONMENTAL MICROBIOLOGY, 2004, 6 (06) :596-604
[7]   Application of bacterial biocathodes in microbial fuel cells [J].
He, Zhen ;
Angenent, Largus T. .
ELECTROANALYSIS, 2006, 18 (19-20) :2009-2015
[8]   Microbial fuel cells: Methodology and technology [J].
Logan, Bruce E. ;
Hamelers, Bert ;
Rozendal, Rene A. ;
Schrorder, Uwe ;
Keller, Jurg ;
Freguia, Stefano ;
Aelterman, Peter ;
Verstraete, Willy ;
Rabaey, Korneel .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (17) :5181-5192
[9]  
López-López A, 1999, BIOTECHNOL BIOENG, V63, P79, DOI 10.1002/(SICI)1097-0290(19990405)63:1<79::AID-BIT8>3.0.CO
[10]  
2-Z