Stability criterion for bright solitary waves of the perturbed cubic-quintic Schrodinger equation

被引:38
作者
Kapitula, T [1 ]
机构
[1] Univ New Mexico, Dept Math & Stat, Albuquerque, NM 87131 USA
来源
PHYSICA D | 1998年 / 116卷 / 1-2期
关键词
D O I
10.1016/S0167-2789(97)00245-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The stability of the bright solitary wave solution to the perturbed cubic-quintic Schrodinger equation is considered. It is shown that in a certain region of parameter space these solutions are unstable, with the instability being manifested as a small positive eignevalue. Furthermore, it is shown that in the complimentary region of parameter space then are no small unstable eigenvalues. The proof involves a novel calculation of the Evans function: which is of interest in its own right. As a consequence of the eigenvalue calculation, it is additionally shown that N-bump bright solitary waves bifurcate from the primary wave. Copyright (C) 1998 Elsevier Science B.V.
引用
收藏
页码:95 / 120
页数:26
相关论文
共 32 条
[1]   NOVEL ARBITRARY-AMPLITUDE SOLITON-SOLUTIONS OF THE CUBIC-QUINTIC COMPLEX GINZBURG-LANDAU EQUATION [J].
AKHMEDIEV, N ;
AFANASJEV, VV .
PHYSICAL REVIEW LETTERS, 1995, 75 (12) :2320-2323
[2]   A TOPOLOGICAL INVARIANT ARISING IN THE STABILITY ANALYSIS OF TRAVELING WAVES [J].
ALEXANDER, J ;
GARDNER, R ;
JONES, C .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1990, 410 :167-212
[3]  
ALEXANDER JC, 1994, J REINE ANGEW MATH, V446, P49
[4]   EXISTENCE AND STABILITY OF ASYMPTOTICALLY OSCILLATORY TRIPLE PULSES [J].
ALEXANDER, JC ;
JONES, CKRT .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1993, 44 (02) :189-200
[5]  
Bishop R.L., 1968, TENSOR ANAL MANIFOLD
[6]  
Boling G, 1995, J DIFFER EQUATIONS, V123, P35
[7]   SELF-TRAPPED PROPAGATION IN THE NONLINEAR CUBIC-QUINTIC SCHRODINGER-EQUATION - A VARIATIONAL APPROACH [J].
DEANGELIS, C .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1994, 30 (03) :818-821
[8]   PERIODIC AND QUASI-PERIODIC SOLUTIONS OF DEGENERATE MODULATION EQUATIONS [J].
DOELMAN, A ;
ECKHAUS, W .
PHYSICA D, 1991, 53 (2-4) :249-266
[9]   FRONTS, DOMAIN-WALLS AND PULSES IN A GENERALIZED GINZBURG-LANDAU EQUATION [J].
DUAN, JQ ;
HOLMES, P .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1995, 38 :77-97
[10]  
FLANDERS H, 1989, DIFFERENTIAL FORMS A