Coalgebra extensions and algebra coextensions of Galois type

被引:54
作者
Brzezinski, T [1 ]
Hajac, PM
机构
[1] Univ York, Dept Math, York YO1 5DD, N Yorkshire, England
[2] Int Sch Adv Studies, I-34013 Trieste, Italy
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1080/00927879908826498
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The notion of a coalgebra-Galois extension is defined as a natural generalisation of a Hopf-Galois extension. It is shown that any coalgebra-Galois extension induces a unique entwining map psi compatible with the right coaction. For the dual notion of an algebra-Galois coextension it is also proven that there always exists a unique entwining structure compatible with the right action.
引用
收藏
页码:1347 / 1367
页数:21
相关论文
共 23 条
[1]   Quantum homogeneous spaces as quantum quotient spaces [J].
Brzezinski, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (05) :2388-2399
[2]  
Brzezinski T., 1996, Journal of Geometry and Physics, V20, P349, DOI 10.1016/S0393-0440(96)00003-4
[3]   Coalgebra bundles [J].
Brzezinski, T ;
Majid, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 191 (02) :467-492
[4]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[5]   QUANTUM GROUP GAUGE-THEORY ON QUANTUM SPACES [J].
BRZEZINSKI, T ;
MAJID, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 157 (03) :591-638
[6]  
BRZEZINSKI T, 1997, DAMTP9760
[7]  
BRZEZINSKI T, 1997, DAMTP97142
[8]   QUANTUM HOMOGENEOUS SPACES, DUALITY AND QUANTUM 2-SPHERES [J].
DIJKHUIZEN, MS ;
KOORNWINDER, TH .
GEOMETRIAE DEDICATA, 1994, 52 (03) :291-315
[9]  
DOI Y, 1983, COMMUN ALGEBRA, V11, P243, DOI 10.1080/00927878308822847
[10]   Strong connections on quantum principal bundles [J].
Hajac, PM .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 182 (03) :579-617