Efficient Generation of Transcriptomic Profiles by Random Composite Measurements

被引:75
作者
Cleary, Brian [1 ,2 ]
Le Cong [1 ]
Cheung, Anthea [1 ]
Lander, Eric S. [1 ,3 ,4 ]
Regev, Aviv [1 ,3 ,5 ]
机构
[1] Broad Inst MIT & Harvard, Klarman Cell Observ, Cambridge, MA 02142 USA
[2] MIT, Computat & Syst Biol Program, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Biol, Cambridge, MA 02139 USA
[4] Harvard Med Sch, Dept Syst Biol, Boston, MA USA
[5] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
关键词
CELL RNA-SEQ; GENE-EXPRESSION DATA; IMMUNE; DECOMPOSITION; NETWORKS; ENABLES; TISSUES;
D O I
10.1016/j.cell.2017.10.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA profiles are an informative phenotype of cellular and tissue states but can be costly to generate at massive scale. Here, we describe how gene expression levels can be efficiently acquired with random composite measurements-in which abundances are combined in a random weighted sum. We show (1) that the similarity between pairs of expression profiles can be approximated with very few composite measurements; (2) that by leveraging sparse, modular representations of gene expression, we can use randomcomposite measurements to recover high-dimensional gene expression levels (with 100 times fewer measurements than genes); and (3) that it is possible to blindly recover gene expression from composite measurements, even without access to training data. Our results suggest new compressive modalities as a foundation for massive scaling in high-throughput measurements and new insights into the interpretation of high-dimensional data.
引用
收藏
页码:1424 / +
页数:31
相关论文
共 51 条
[1]   A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response [J].
Adamson, Britt ;
Norman, Thomas M. ;
Jost, Marco ;
Cho, Min Y. ;
Nunez, James K. ;
Chen, Yuwen ;
Villalta, Jacqueline E. ;
Gilbert, Luke A. ;
Horlbeck, Max A. ;
Hein, Marco Y. ;
Pak, Ryan A. ;
Gray, Andrew N. ;
Gross, Carol A. ;
Dixit, Atray ;
Parnas, Oren ;
Regev, Aviv ;
Weissman, Jonathan S. .
CELL, 2016, 167 (07) :1867-+
[2]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[3]   Multiplexed ion beam imaging of human breast tumors [J].
Angelo, Michael ;
Bendall, Sean C. ;
Finck, Rachel ;
Hale, Matthew B. ;
Hitzman, Chuck ;
Borowsky, Alexander D. ;
Levenson, Richard M. ;
Lowe, John B. ;
Liu, Scot D. ;
Zhao, Shuchun ;
Natkunam, Yasodha ;
Nolan, Garry P. .
NATURE MEDICINE, 2014, 20 (04) :436-+
[4]  
[Anonymous], 1984, C MODERN ANAL PROBAB
[5]  
[Anonymous], ARXIV150801842
[6]  
[Anonymous], ARXIV151104514
[7]  
[Anonymous], ARXIV150401169
[8]  
[Anonymous], BIORXIV
[9]  
[Anonymous], 2010, Modern multidimensional scaling: theory and applications
[10]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696