Efficient Generation of Transcriptomic Profiles by Random Composite Measurements

被引:75
作者
Cleary, Brian [1 ,2 ]
Le Cong [1 ]
Cheung, Anthea [1 ]
Lander, Eric S. [1 ,3 ,4 ]
Regev, Aviv [1 ,3 ,5 ]
机构
[1] Broad Inst MIT & Harvard, Klarman Cell Observ, Cambridge, MA 02142 USA
[2] MIT, Computat & Syst Biol Program, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Dept Biol, Cambridge, MA 02139 USA
[4] Harvard Med Sch, Dept Syst Biol, Boston, MA USA
[5] Howard Hughes Med Inst, Chevy Chase, MD 20815 USA
关键词
CELL RNA-SEQ; GENE-EXPRESSION DATA; IMMUNE; DECOMPOSITION; NETWORKS; ENABLES; TISSUES;
D O I
10.1016/j.cell.2017.10.023
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA profiles are an informative phenotype of cellular and tissue states but can be costly to generate at massive scale. Here, we describe how gene expression levels can be efficiently acquired with random composite measurements-in which abundances are combined in a random weighted sum. We show (1) that the similarity between pairs of expression profiles can be approximated with very few composite measurements; (2) that by leveraging sparse, modular representations of gene expression, we can use randomcomposite measurements to recover high-dimensional gene expression levels (with 100 times fewer measurements than genes); and (3) that it is possible to blindly recover gene expression from composite measurements, even without access to training data. Our results suggest new compressive modalities as a foundation for massive scaling in high-throughput measurements and new insights into the interpretation of high-dimensional data.
引用
收藏
页码:1424 / +
页数:31
相关论文
共 51 条
[11]   Iterative signature algorithm for the analysis of large-scale gene expression data [J].
Bergmann, S ;
Ihmels, J ;
Barkai, N .
PHYSICAL REVIEW E, 2003, 67 (03) :18
[12]   Knowledge-based analysis of microarray gene expression data by using support vector machines [J].
Brown, MPS ;
Grundy, WN ;
Lin, D ;
Cristianini, N ;
Sugnet, CW ;
Furey, TS ;
Ares, M ;
Haussler, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (01) :262-267
[13]   Robust uncertainty principles:: Exact signal reconstruction from highly incomplete frequency information [J].
Candès, EJ ;
Romberg, J ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (02) :489-509
[14]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[15]  
Candès EJ, 2008, IEEE SIGNAL PROC MAG, V25, P21, DOI 10.1109/MSP.2007.914731
[16]  
Cheng Y, 2000, Proc Int Conf Intell Syst Mol Biol, V8, P93
[17]   An elementary proof of a theorem of Johnson and Lindenstrauss [J].
Dasgupta, S ;
Gupta, A .
RANDOM STRUCTURES & ALGORITHMS, 2003, 22 (01) :60-65
[18]   Single-Cell RNA-Seq Reveals Dynamic, Random Monoallelic Gene Expression in Mammalian Cells [J].
Deng, Qiaolin ;
Ramskold, Daniel ;
Reinius, Bjorn ;
Sandberg, Rickard .
SCIENCE, 2014, 343 (6167) :193-196
[19]   Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens [J].
Dixit, Atray ;
Pamas, Oren ;
Li, Biyu ;
Chen, Jenny ;
Fulco, Charles P. ;
Jerby-Amon, Livnat ;
Marjanovic, Nemanja D. ;
Dionne, Danielle ;
Burks, Tyler ;
Raychowdhury, Raktima ;
Adamson, Britt ;
Norman, Thomas M. ;
Lander, Eric S. ;
Weissman, Jonathan S. ;
Friedman, Nir ;
Regev, Aviv .
CELL, 2016, 167 (07) :1853-+
[20]  
Donner Y, 2012, NAT METHODS, V9, P1120, DOI [10.1038/NMETH.2207, 10.1038/nmeth.2207]