Distinct and overlapping functions of insulin and IGF-I receptors

被引:407
作者
Nakae, J
Kido, Y
Accili, D
机构
[1] Columbia Univ Coll Phys & Surg, Dept Med, New York, NY 10032 USA
[2] Kobe Univ, Sch Med, Dept Internal Med 2, Kobe, Hyogo 6500017, Japan
关键词
D O I
10.1210/edrv.22.6.0452
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Targeted gene mutations have established distinct, yet overlapping, developmental roles for receptors of the insulin/IGF family. IGF-I receptor mediates IGF-I and IGF-II action on prenatal growth and IGF-I action on postnatal growth. Insulin receptor mediates prenatal growth in response to IGF-II and postnatal metabolism in response to insulin. In rodents, unlike humans, insulin does not participate in embryonic growth until late gestation. The ability of the insulin receptor to act as a bona fide IGF-II-dependent growth promoter is underscored by its rescue of double knockout Igf1r/Igf2r mice. Thus, IGF-II is a true bifunctional ligand that is able to stimulate both insulin and IGF-I receptor signaling, although with different potencies. In contrast, the IGF-II/cation-independent mannose-6-phosphate receptor regulates IGF-II clearance. The growth retardation of mice lacking IGF-I and/or insulin receptors is due to reduced cell number, resulting from decreased proliferation. Evidence from genetically engineered mice does not support the view that insulin and IGF receptors promote cellular differentiation in vivo or that they are required for early embryonic development. The phenotypes of insulin receptor gene mutations in humans and in mice indicate important differences between the developmental roles of insulin and its receptor in the two species.
引用
收藏
页码:818 / 835
页数:18
相关论文
共 283 条
[21]   GLUCOSE KINETICS IN LEPRECHAUNISM - ACCELERATED FASTING DUE TO INSULIN RESISTANCE [J].
BIER, DM ;
SCHEDEWIE, H ;
LARNER, J ;
OLEFSKY, J ;
RUBENSTEIN, A ;
FISER, RH ;
CRAIG, JW ;
ELDERS, MJ .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1980, 51 (05) :988-994
[22]   Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1 [J].
Biggs, WH ;
Meisenhelder, J ;
Hunter, T ;
Cavenee, WK ;
Arden, KC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (13) :7421-7426
[23]   Polyhormonal aspect of the endocrine cells of the human fetal pancreas [J].
Bocian-Sobkowska, J ;
Zabel, M ;
Wozniak, W ;
Surdyk-Zasada, J .
HISTOCHEMISTRY AND CELL BIOLOGY, 1999, 112 (02) :147-153
[24]   Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1-4 [J].
Böhni, R ;
Riesgo-Escovar, J ;
Oldham, S ;
Brogiolo, W ;
Stocker, H ;
Andruss, BF ;
Beckingham, K ;
Hafen, E .
CELL, 1999, 97 (07) :865-875
[25]   Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor [J].
Brunet, A ;
Bonni, A ;
Zigmond, MJ ;
Lin, MZ ;
Juo, P ;
Hu, LS ;
Anderson, MJ ;
Arden, KC ;
Blenis, J ;
Greenberg, ME .
CELL, 1999, 96 (06) :857-868
[26]   Role of brain insulin receptor in control of body weight and reproduction [J].
Brüning, JC ;
Gautam, D ;
Burks, DJ ;
Gillette, J ;
Schubert, M ;
Orban, PC ;
Klein, R ;
Krone, W ;
Müller-Wieland, D ;
Kahn, CR .
SCIENCE, 2000, 289 (5487) :2122-2125
[27]   A muscle-specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance [J].
Bruning, JC ;
Michael, MD ;
Winnay, JN ;
Hayashi, T ;
Horsch, D ;
Accili, D ;
Goodyear, LJ ;
Kahn, CR .
MOLECULAR CELL, 1998, 2 (05) :559-569
[28]   Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles [J].
Bruning, JC ;
Winnay, J ;
BonnerWeir, S ;
Taylor, SI ;
Accili, D ;
Kahn, CR .
CELL, 1997, 88 (04) :561-572
[29]   Specific, high affinity relaxin-like factor receptors [J].
Büllesbach, EE ;
Schwabe, C .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (32) :22354-22358
[30]   IRS-2 pathways integrate female reproduction and energy homeostasis [J].
Burks, DJ ;
de Mora, JF ;
Schubert, M ;
Withers, DJ ;
Myers, MG ;
Towery, HH ;
Altamuro, SL ;
Flint, CL ;
White, MF .
NATURE, 2000, 407 (6802) :377-382