time series analysis;
lesions in magnetic resonance imaging;
temporal analysis;
multiple sclerosis;
D O I:
10.1016/S1361-8415(00)00005-0
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
This paper presents a new method for the automatic segmentation and characterization of object changes in time series of three-dimensional data sets. The technique was inspired by procedures developed for analysis of functional MRI data sets. After precise registration of serial volume data sets to 4-D data, we applied a time series analysis taking into account the characteristic time function of variable lesions. The images were preprocessed with a correction of image field inhomogeneities and a normalization of the brightness over the whole time series, Thus, static regions remain unchanged over time, whereas changes in tissue characteristics produce typical intensity variations in the voxel's time series. A set of features was derived from the times series, expressing probabilities for membership to the sought structures. These multiple sources of uncertain evidence were combined to a single evidence value using Dempster-Shafer's theory. The project was driven by the objective of improving the segmentation and characterization of white matter lesions in serial MR data of multiple sclerosis patients. Pharmaceutical research and patient follow-up requires efficient and robust methods with a high degree of automation. The new approach replaces conventional segmentation of series of 3-D data sets by a 1-D processing of the temporal change at each voxel in the 4-D image data set. The new method has been applied to a total of 11 time series from different patient studies, covering time resolutions of 12 and 24 data sets over a period of about 1 year. The results demonstrate that time evolution is a highly sensitive feature for detection of fluctuating structures. (C) 2000 Elsevier Science BN, All rights reserved.