On the critical value for 'percolation' of minimum-weight trees in the mean-field distance model

被引:5
作者
Aldous, D [1 ]
机构
[1] Univ Calif Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
D O I
10.1017/S0963548397003155
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Consider the complete n-graph with independent exponential (mean n) edge-weights. Let M(c, n) be the maximal size of subtree for which the average edge-weight is at most c. It is shown that M(c, n) makes the transition from o(n) to Omega(n) around some critical value c(0), which can be specified in terms of a fixed point of a mapping on probability distributions.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 13 条
[1]   ASYMPTOTICS IN THE RANDOM ASSIGNMENT PROBLEM [J].
ALDOUS, D .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 93 (04) :507-534
[2]  
Aldous D., 1990, RANDOM STRUCT ALGOR, DOI [10.1002/rsa.3240010402, DOI 10.1002/RSA.3240010402]
[3]  
ALDOUS D, 1983, PROBABILITY STAT ANA, P1
[4]  
Aldous David, 1992, COMB PROBAB COMPUT, V1, P281
[5]  
ALDOUS DJ, 1997, 481 U C BERK STAT DE
[6]   THE GROWTH AND SPREAD OF THE GENERAL BRANCHING RANDOM WALK [J].
Biggins, J. D. .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (04) :1008-1024
[7]   ON THE VALUE OF A RANDOM MINIMUM SPANNING TREE PROBLEM [J].
FRIEZE, AM .
DISCRETE APPLIED MATHEMATICS, 1985, 10 (01) :47-56
[8]   THE BIRTH OF THE GIANT COMPONENT [J].
JANSON, S ;
KNUTH, DE ;
LUCZAK, T ;
PITTEL, B .
RANDOM STRUCTURES & ALGORITHMS, 1993, 4 (03) :233-358
[9]   HIGHER-ORDER LINDLEY EQUATIONS [J].
KARPELEVICH, FI ;
KELBERT, MY ;
SUHOV, YM .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 53 (01) :65-96
[10]   1ST BIRTH PROBLEM FOR AN AGE-DEPENDENT BRANCHING PROCESS [J].
KINGMAN, JFC .
ANNALS OF PROBABILITY, 1975, 3 (05) :790-801