Voltage-dependent gating of single wild-type and S4 mutant KAT1 inward rectifier potassium channels

被引:38
作者
Zei, PC
Aldrich, RW [1 ]
机构
[1] Stanford Univ, Sch Med, Dept Mol & Cellular Physiol, Beckman Ctr B171, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Howard Hughes Med Inst, Stanford, CA 94305 USA
关键词
single channel analysis; S4; region; Arabidopsis thaliana; site-directed mutagenesis; activation;
D O I
10.1085/jgp.112.6.679
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
The voltage-dependent gating mechanism of KAT1 inward rectifier potassium channels was studied using single channel current recordings from Xenopus oocytes injected with KAT1 mRNA. The inward rectification properties of KAT1 result from an intrinsic gating mechanism in the KAT1 channel protein, not from pore block by an extrinsic cation species. KAT1 channels activate with hyperpolarizing potentials from -110 through -190 mV with a slow voltage-dependent time course. Transitions before first opening are voltage dependent and account for much of the voltage dependence of activation, while transitions after first opening are only slightly voltage dependent. Using burst analysis, transitions near the open state were analyzed in detail. A kinetic model with multiple closed states before first opening, a single open state, a single closed state after first opening, and a closed-state inactivation pathway accurately describes the single channel and macroscopic data. Two mutations neutralizing charged residues in the S4 region (R117Q and R176L) were introduced, and their effects on single channel gating properties were examined. Both mutations resulted in depolarizing shifts in the steady state conductance-voltage relationship, shortened first latencies to opening, decreased probability of terminating bursts, and increased burst durations. These effects on gating were well described by changes in the rate constants in the kinetic model describing KAT1 channel gating. All transitions before the open state were affected by the mutations, while the transitions after the open state were unaffected, implying that the S4 region contributes to the early steps in gating for KAT1 channels.
引用
收藏
页码:679 / 713
页数:35
相关论文
共 88 条
[11]  
Colquhoun David, 1995, P397
[12]   Separation of gating properties from permeation and block in mslo large conductance Ca-activated K+ channels [J].
Cox, DH ;
Cui, J ;
Aldrich, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (05) :633-646
[13]   Intrinsic voltage dependence and Ca2+ regulation of mslo large conductance Ca-activated K+ channels [J].
Cui, J ;
Cox, DH ;
Aldrich, RW .
JOURNAL OF GENERAL PHYSIOLOGY, 1997, 109 (05) :647-673
[14]   A MOLECULAR-BASIS FOR CARDIAC-ARRHYTHMIA - HERG MUTATIONS CAUSE LONG QT SYNDROME [J].
CURRAN, ME ;
SPLAWSKI, I ;
TIMOTHY, KW ;
VINCENT, GM ;
GREEN, ED ;
KEATING, MT .
CELL, 1995, 80 (05) :795-803
[15]   EXPRESSION OF AN ATRIAL G-PROTEIN-ACTIVATED POTASSIUM CHANNEL IN XENOPUS-OOCYTES [J].
DASCAL, N ;
LIM, NF ;
SCHREIBMAYER, W ;
WANG, WZ ;
DAVIDSON, N ;
LESTER, HA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (14) :6596-6600
[16]   THE INACTIVATION GATE OF THE SHAKER K+ CHANNEL BEHAVES LIKE AN OPEN-CHANNEL BLOCKER [J].
DEMO, SD ;
YELLEN, G .
NEURON, 1991, 7 (05) :743-753
[17]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[18]   STRONG VOLTAGE-DEPENDENT INWARD RECTIFICATION OF INWARD RECTIFIER K+ CHANNELS IS CAUSED BY INTRACELLULAR SPERMINE [J].
FAKLER, B ;
BRANDLE, U ;
GLOWATZKI, E ;
WEIDEMANN, S ;
ZENNER, HP ;
RUPPERSBERG, JP .
CELL, 1995, 80 (01) :149-154
[19]   SPERMINE AND SPERMIDINE AS GATING MOLECULES FOR INWARD RECTIFIER K+ CHANNELS [J].
FICKER, E ;
TAGLIALATELA, M ;
WIBLE, BA ;
HENLEY, CM ;
BROWN, AM .
SCIENCE, 1994, 266 (5187) :1068-1072
[20]   ALTERATION OF POTASSIUM CHANNEL GATING - MOLECULAR ANALYSIS OF THE DROSOPHILA SH5 MUTATION [J].
GAUTAM, M ;
TANOUYE, MA .
NEURON, 1990, 5 (01) :67-73