On a class of equations arising in linear viscoelasticity theory

被引:8
作者
Atanackovic, T [1 ]
Pilipovic, S
机构
[1] Univ Novi Sad, Fac Tech Sci, Inst Mech, Novi Sad 21000, Serbia Monteneg
[2] Univ Novi Sad, Inst Math, Novi Sad 21000, Serbia Monteneg
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2005年 / 85卷 / 10期
关键词
distributed order equations; viscoelasticity;
D O I
10.1002/zamm.200310209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and uniqueness of solution for a class of equations of the form Sigma(i=0)(m) aiy((i))(t) + integral(a)(b)Phi(alpha)y((alpha))(t)d alpha = h(t), where y((alpha))(t) is the Riemann Liouville fractional derivative, in the space of tempered distributions. Such equations arise in the distributed derivatives models of linear viscoelasticity.
引用
收藏
页码:748 / 754
页数:7
相关论文
共 17 条
[1]  
[Anonymous], 1988, TAUBERIAN THEOREMS G
[2]   On a distributed derivative model of a viscoelastic body [J].
Atanackovic, TM .
COMPTES RENDUS MECANIQUE, 2003, 331 (10) :687-692
[3]   A generalized model for the uniaxial isothermal deformation of a viscoelastic body [J].
Atanackovic, TM .
ACTA MECHANICA, 2002, 159 (1-4) :77-86
[4]   A modified Zener model of a viscoelastic body [J].
Atanackovic, TM .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2002, 14 (02) :137-148
[5]  
Bagley R.L., 2000, International Journal of Applied Mathematics, V2, P865
[6]  
Bagley R.L., 2000, International Journal of Applied Mathematics, V2, P965
[7]   ON THE FRACTIONAL CALCULUS MODEL OF VISCOELASTIC BEHAVIOR [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1986, 30 (01) :133-155
[8]  
Caputo M., 1971, Rivista del Nuovo Cimento, V1, P161, DOI 10.1007/BF02820620
[9]  
Caputo M., 2001, Fract. Calc. Appl. Anal., V4, P421
[10]   Fractional-order system identification based on continuous order-distributions [J].
Hartley, TT ;
Lorenzo, CF .
SIGNAL PROCESSING, 2003, 83 (11) :2287-2300