On a class of equations arising in linear viscoelasticity theory

被引:8
作者
Atanackovic, T [1 ]
Pilipovic, S
机构
[1] Univ Novi Sad, Fac Tech Sci, Inst Mech, Novi Sad 21000, Serbia Monteneg
[2] Univ Novi Sad, Inst Math, Novi Sad 21000, Serbia Monteneg
来源
ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2005年 / 85卷 / 10期
关键词
distributed order equations; viscoelasticity;
D O I
10.1002/zamm.200310209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and uniqueness of solution for a class of equations of the form Sigma(i=0)(m) aiy((i))(t) + integral(a)(b)Phi(alpha)y((alpha))(t)d alpha = h(t), where y((alpha))(t) is the Riemann Liouville fractional derivative, in the space of tempered distributions. Such equations arise in the distributed derivatives models of linear viscoelasticity.
引用
收藏
页码:748 / 754
页数:7
相关论文
共 17 条
[11]  
Oldham K B, 1974, FRACTIONAL CALCULUS
[12]   Volterra-type equations in S′+ [J].
Pilipovic, S ;
Stojanovic, M .
MATHEMATICAL NOTES, 2004, 75 (1-2) :124-130
[13]  
Rossikhin YA, 2001, Z ANGEW MATH MECH, V81, P363, DOI 10.1002/1521-4001(200106)81:6<363::AID-ZAMM363>3.0.CO
[14]  
2-9
[15]  
Samko SG., 1993, Fractional Integral and Derivatives: Theory and Applications
[16]  
Schmidt A, 2003, Z ANGEW MATH MECH, V83, P26, DOI [10.1002/zamm.200310001, 10.1002/zamm.200310002]
[17]  
VLADIMIROV VS, 1979, EQUATIONS MATH PHYS