Molecular dynamics-solvated interaction energy studies of protein-protein interactions:: The MP1-p14 scaffolding complex

被引:142
作者
Cui, Qizhi [1 ]
Sulea, Traian [1 ]
Schrag, Joseph D. [1 ]
Munger, Christine [2 ]
Hung, Ming-Ni [1 ]
Naim, Marwen [1 ]
Cygler, Miroslaw [1 ,2 ]
O. Purisima, Enrico [1 ]
机构
[1] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada
[2] McGill Univ, Dept Biochem, Montreal, PQ H3G 1Y6, Canada
关键词
binding affinity calculations; MAP kinase signaling; virtual alanine scanning; yeast two-hybrid assay;
D O I
10.1016/j.jmb.2008.04.035
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Using the MP1-p14 scaffolding complex from the mitogen-activated protein kinase signaling pathway as model system, we explored a structure-based computational protocol to probe and characterize binding affinity hot spots at protein-protein interfaces. Hot spots are located by virtual alanine-scanning consensus predictions over three different energy functions and two different single-structure representations of the complex. Refined binding affinity predictions for select hot-spot mutations are carried out by applying first-principle methods such as the molecular mechanics generalized Born surface area (MM-GBSA) and solvated interaction energy (SIE) to the molecular dynamics (MD) trajectories for mutated and wild-type complexes. Here, predicted hot-spot residues were actually mutated to alanine, and crystal structures of the mutated complexes were determined. Two mutated MP1-p14 complexes were investigated, the p14(Y56A)-mutated complex and the MP1(L63A,L65A)-mutated complex. Alternative ways to generate MD ensembles for mutant complexes, not relying on crystal structures for mutated complexes, were also investigated. The SIE function, fitted on protein-ligand binding affinities, gave absolute binding affinity predictions in excellent agreement with experiment and outperformed standard MM-GBSA predictions when tested on the MD ensembles of Ras-Raf and Ras-RalGDS protein-protein complexes. For wild-type and mutant MP1-p14 complexes, SIE predictions of relative binding affinities were supported by a yeast two-hybrid assay that provided semiquantitative relative interaction strengths. Results on the MP,I-mutated complex suggested that SIE predictions deteriorate if mutant MD ensembles are approximated by just mutating the wild-type MD trajectory. The SIE data on the p14-mutated complex indicated feasibility for generating mutant MD ensembles from mutated wild-type crystal structure, despite local structural differences observed upon mutation. For energetic considerations, this would circumvent costly needs to produce and crystallize mutated complexes. The sensitized protein-protein interface afforded by the p14(Y56A) mutation identified here has practical applications in screening-based discovery of first-generation small-molecule hits for further development into specific modulators of the mitogen-activated protein kinase signaling pathway. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:787 / 802
页数:16
相关论文
共 61 条
[1]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[2]  
BEVERIDGE DL, 1989, ANNU REV BIOPHYS BIO, V18, P431, DOI 10.1146/annurev.biophys.18.1.431
[3]   Molecular surface generation using a variable-radius solvent probe [J].
Bhat, S ;
Purisima, EO .
PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2006, 62 (01) :244-261
[4]   Computational analysis of binding of P1 variants to trypsin [J].
Brandsdal, BO ;
Åqvist, J ;
Smalås, AO .
PROTEIN SCIENCE, 2001, 10 (08) :1584-1595
[5]   Effects of sorafenib on symptoms and quality of life - Results from a large randomized placebo-controlled study in renal cancer [J].
Bukowski, Ronald ;
Cella, David ;
Gondek, Kathleen ;
Escudier, Bernard .
AMERICAN JOURNAL OF CLINICAL ONCOLOGY-CANCER CLINICAL TRIALS, 2007, 30 (03) :220-227
[6]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[7]   Calculation of cyclodextrin binding affinities: Energy, entropy, and implications for drug design [J].
Chen, W ;
Chang, CE ;
Gilson, MK .
BIOPHYSICAL JOURNAL, 2004, 87 (05) :3035-3049
[8]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[9]   Calculation of standard binding free energies: Aromatic molecules in the T4 lysozyme L99A mutant [J].
Deng, Yuqing ;
Roux, Benoit .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2006, 2 (05) :1255-1273
[10]   MAP kinase signalling pathways in cancer [J].
Dhillon, A. S. ;
Hagan, S. ;
Rath, O. ;
Kolch, W. .
ONCOGENE, 2007, 26 (22) :3279-3290