Lithium insertion/extraction mechanism in alloy anodes for lithium-ion batteries

被引:309
作者
Zhang, Wei-Jun [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Mech Engn, Richmond, VA 23284 USA
关键词
Batteries; Alloy anodes; Reaction mechanism; Phase transformation; Particle size; X-RAY-DIFFRACTION; THIN-FILM ANODES; IN-SITU; NEGATIVE ELECTRODE; HIGH-CAPACITY; ELECTROCHEMICAL CHARACTERISTICS; INTERMETALLIC-COMPOUND; COMPOSITE ANODES; MISCIBILITY GAP; RATE CAPABILITY;
D O I
10.1016/j.jpowsour.2010.08.114
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical performance of alloy anodes has been reviewed in a previous paper [1]. In this work, the fundamental understanding of lithium-insertion/extraction mechanism in alloy anodes is discussed. The article summarizes the different types of lithium-reaction processes observed in Si, Sn, Sb, Al, Mg and their alloys, with particular emphasis on the characteristics unique to alloy anodes, including the sloping voltage profiles, lithiation amorphization, cycling hysteresis and reaction-potential depression. These unique characteristics are discussed with respect to the effect of interface and surface energies on the phase transformation and thermodynamic stability of fine alloy particles. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:877 / 885
页数:9
相关论文
共 86 条
[1]   Electrochemical reaction of lithium with the CoSb3 skutterudite [J].
Alcántara, R ;
Fernández-Madrigal, FJ ;
Lavela, P ;
Tirado, JL ;
Jumas, JC ;
Olivier-Fourcade, J .
JOURNAL OF MATERIALS CHEMISTRY, 1999, 9 (10) :2517-2521
[2]   High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells [J].
Amine, K ;
Liu, J ;
Belharouak, I .
ELECTROCHEMISTRY COMMUNICATIONS, 2005, 7 (07) :669-673
[3]   MULTINARY ALLOY ELECTRODES FOR SOLID-STATE BATTERIES .1. A PHASE-DIAGRAM APPROACH FOR THE SELECTION AND STORAGE PROPERTIES DETERMINATION OF CANDIDATE ELECTRODE MATERIALS [J].
ANANI, A ;
HUGGINS, RA .
JOURNAL OF POWER SOURCES, 1992, 38 (03) :351-362
[4]   Lithium reactions with intermetallic-compound electrodes [J].
Benedek, R ;
Thackeray, MM .
JOURNAL OF POWER SOURCES, 2002, 110 (02) :406-411
[5]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[6]   An amorphous Si thin film anode with high capacity and long cycling life for lithium ion batteries [J].
Chen, L. B. ;
Xie, J. Y. ;
Yu, H. C. ;
Wang, T. H. .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2009, 39 (08) :1157-1162
[7]   First Principles Studies of Disordered Lithiated Silicon [J].
Chevrier, V. L. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (04) :A392-A398
[8]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[9]   Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model [J].
Delmas, C. ;
Maccario, M. ;
Croguennec, L. ;
Le Cras, F. ;
Weill, F. .
NATURE MATERIALS, 2008, 7 (08) :665-671
[10]   An In Situ Study of the Electrochemical Reaction of Li with Nanostructured Sn30Co30C40 [J].
Ferguson, P. P. ;
Dunlap, R. A. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (03) :A326-A332