It is generally assumed that central nervous system injury sustained during development produces less severe behavioral deficits than damage in the adult, due to increased plasticity of the immature brain. However; developmental plasticity may also exacerbate deficits, presumably through formation of anomalous connections. Previous studies showed that after unilateral neonatal, but not adult, electrolytic hippocampal lesion spatial memory is severely impaired. To determine whether the memory deficit is correlated with anatomical changes in a major hippocampal afferent system, the septal input, the anterograde tracer Phaeseolus vulgaris leucoagglutinin was injected into the medial septum 2 months after unilateral neonatal hippocampal lesion. The density of septal fiber projections into the entorhinal cortex (EC) was found to be increased. Choline-acetyltransferase activity increased significantly in the EC 2 months postlesion, suggesting that septal cholinergic fibers are sprouting. Finally, nerve growth factor (NGF), which can mediate sprouting, was measured in the EC. NGF protein increased transiently 7 to 12 days postlesion in the ipsilateral EC, suggesting that increased trophic support is associated with growth of septal afferents into the EC. Thus, neonatal hippocampal lesion causes a reorganization of axonal connections associated with elevated NGF in the target region of the increased septal input. Moreover, since previous studies showed that the neonatal lesion is accompanied by a spatial memory deficit, this plasticity may compromise function of the remaining circuitry. (C) 1996 Academic Press, Inc.