How organisms do the right thing: The attractor hypothesis

被引:35
作者
Emlen, JM
Freeman, DC
Mills, A
Graham, JH
机构
[1] US Geol Survey, Biol Resources Div, NW Biol Sci Ctr, Seattle, WA 98115 USA
[2] Wayne State Univ, Dept Biol Sci, Detroit, MI 48202 USA
[3] Berry Coll, Dept Biol, Mt Berry, GA 30149 USA
关键词
D O I
10.1063/1.166355
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Neo-Darwinian theory is highly successful at explaining the emergence of adaptive traits over successive generations. However, there are reasons to doubt its efficacy in explaining the observed, impressively detailed adaptive responses of organisms to day-to-day changes in their surroundings. Also, the theory lacks a clear mechanism to account for both plasticity and canalization. In effect, there is a growing sentiment that the neo-Darwinian paradigm is incomplete, that something more than genetic structure, mutation, genetic drift, and the action of natural selection is required to explain organismal behavior. In this paper we extend the view of organisms as complex self-organizing entities by arguing that basic physical laws, coupled with the acquisitive nature of makes adaptation all but tautological.'That is: much adaptation is an unavoidable emergent property of organisms' complexity and, to some 2 significant degree, occurs quite independently of genomic changes wrought by natural selection. For reasons that will become obvious, we refer to this assertion as the attractor hypothesis. The arguments also clarify the concept of "adaptation." Adaptation across generations, by natural selection, equates to the (game theoretic) maximization of fitness (the success with which one individual produces more individuals), while self-organizing based adaptation, within generations, equates to energetic efficiency and the matching of intake and biosynthesis to need. Finally, we discuss implications of the attractor hypothesis for a wide variety of genetical and physiological phenomena, including genetic architecture, directed mutation, genetic imprinting, paramutation, hormesis, plasticity, optimality theory, genotype-phenotype linkage and puncuated equilibrium, and present suggestions for tests of the hypothesis. (C) 1998 American Institute of Physics.
引用
收藏
页码:717 / 726
页数:10
相关论文
共 138 条
[31]   LEAF DIMORPHISM IN AQUATIC ANGIOSPERMS - SIGNIFICANCE OF TURGOR PRESSURE AND CELL EXPANSION [J].
DESCHAMP, PA ;
COOKE, TJ .
SCIENCE, 1983, 219 (4584) :505-507
[32]   PREDATOR-INDUCED REACTION NORMS - CYCLIC CHANGES IN SHAPE AND SIZE CAN BE PROTECTIVE [J].
DODSON, S .
BIOSCIENCE, 1989, 39 (07) :447-452
[33]   ON THE EXISTENCE AND THE ROLE OF CHAOTIC PROCESSES IN THE NERVOUS-SYSTEM [J].
DOYON, B .
ACTA BIOTHEORETICA, 1992, 40 (2-3) :113-119
[34]   HETEROSIS AND OUTBREEDING DEPRESSION - A MULTILOCUS MODEL AND AN APPLICATION TO SALMON PRODUCTION [J].
EMLEN, JM .
FISHERIES RESEARCH, 1991, 12 (03) :187-212
[35]  
EMLEN JM, 1985, LATEST BEST ESSAYS E, P163
[36]  
FORST S, 1988, ANNU REV CELL BIOL, V4, P21, DOI 10.1146/annurev.cb.04.110188.000321
[37]   HORMETIC EFFECTS IN PHARMACOLOGY - PHARMACOLOGICAL INVERSIONS AS PROTOTYPES FOR HORMESIS [J].
FURST, A .
HEALTH PHYSICS, 1987, 52 (05) :527-530
[38]  
GALAUD JP, 1993, PHYSIOL PLANTARUM, V87, P25, DOI 10.1111/j.1399-3054.1993.tb08786.x
[39]   SEED AND FRUIT ABORTION AS A PROCESS OF SELF-ORGANIZATION AMONG DEVELOPING SINKS [J].
GANESHAIAH, KN ;
SHAANKER, RU .
PHYSIOLOGIA PLANTARUM, 1994, 91 (01) :81-89
[40]  
GARTON DW, 1984, GENETICS, V108, P445