Eigenvalue-based characterization and test for positive realness of scalar transfer functions

被引:28
作者
Bai, ZJ [1 ]
Freund, RW
机构
[1] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[2] Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA
关键词
linear system; passivity; positive realness; state-space representation; transfer function;
D O I
10.1109/9.895582
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An eigenvalue-based characterization of positive realness of transfer functions of single-input single-output time-invariant linear systems Is derived. Based on this characterization, we propose an efficient computational procedure to determine if a given transfer function is positive real. The input for this eigenvalue-based test is any gi ren, not necessarily minimal, state-space representation of the linear system. The test only involves standard matrix computations, such as computing eigenvalues of a matrix or a matrix pencil, Results of numerical experiments are reported.
引用
收藏
页码:2396 / 2402
页数:7
相关论文
共 29 条
[1]  
Anderson B., 1973, Network Analysis and Synthesis: AModern Systems Theory Approach
[2]  
Anderson B. D. O., 1967, SIAM Journal on Control, V5, P171
[3]   A NEW TEST FOR STRICT POSITIVE REALNESS [J].
ANDERSON, BDO ;
MANSOUR, M ;
KRAUS, FJ .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-FUNDAMENTAL THEORY AND APPLICATIONS, 1995, 42 (04) :226-229
[4]  
Anderson E., 1995, LAPACK USERS GUIDE
[5]  
[Anonymous], 1964, REV ROUM SCI TECH-EL
[6]   THEORY AND APPLICATIONS OF ADAPTIVE-CONTROL - A SURVEY [J].
ASTROM, KJ .
AUTOMATICA, 1983, 19 (05) :471-486
[7]  
Bai, 1997, 97310 BELL LAB
[8]  
BAI Z, 1999, 99302 BELL LAB
[9]  
Boyd S., 1994, LINEAR MATRIX INEQUA, DOI https://doi.org/10.1109/jproc.1998.735454
[10]  
Brune O., 1931, Journal of Mathematics and Physics, V10, P191