Eigenvalue-based characterization and test for positive realness of scalar transfer functions

被引:28
作者
Bai, ZJ [1 ]
Freund, RW
机构
[1] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[2] Lucent Technol, Bell Labs, Murray Hill, NJ 07974 USA
关键词
linear system; passivity; positive realness; state-space representation; transfer function;
D O I
10.1109/9.895582
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An eigenvalue-based characterization of positive realness of transfer functions of single-input single-output time-invariant linear systems Is derived. Based on this characterization, we propose an efficient computational procedure to determine if a given transfer function is positive real. The input for this eigenvalue-based test is any gi ren, not necessarily minimal, state-space representation of the linear system. The test only involves standard matrix computations, such as computing eigenvalues of a matrix or a matrix pencil, Results of numerical experiments are reported.
引用
收藏
页码:2396 / 2402
页数:7
相关论文
共 29 条
[11]  
Chen C.-T., 1984, Linear Systems Theory and Design
[12]  
Desoer CA., 1975, FEEDBACK SYSTEMS INP
[13]   EFFICIENT LINEAR CIRCUIT ANALYSIS BY PADE-APPROXIMATION VIA THE LANCZOS PROCESS [J].
FELDMANN, P ;
FREUND, RW .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1995, 14 (05) :639-649
[14]  
Freund RW, 1999, APPL COMPUT CONT SIG, V1, P435
[15]  
GOLUB GH, 1996, MATRIX CONPUTATIONS
[16]  
Guillemin E.A., 1957, Synthesis of Passive Networks
[17]   FREQUENCY-DOMAIN CONDITIONS FOR STRICTLY POSITIVE REAL FUNCTIONS [J].
IOANNOU, P ;
TAO, G .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (01) :53-54
[18]  
JAKUBOVIC VA, 1962, SOV MATH DOKL, V3, P620
[19]  
Kalman R.E, 1963, P 1 ALL C CIRC SYST, P456