Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping

被引:89
作者
Pilkington, Guy R. [1 ,2 ]
Parker, Roy [1 ,2 ]
机构
[1] Univ Arizona, Dept Mol & Cellular Biol, Tucson, AZ 85721 USA
[2] Univ Arizona, Howard Hughes Med Inst, Tucson, AZ 85721 USA
关键词
D O I
10.1128/MCB.00936-07
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The control of mRNA degradation and translation are important aspects of gene regulation. Recent results suggest that translation repression and mRNA decapping can be intertwined and involve the formation of a quiescent mRNP, which can accumulate in cytoplasmic foci referred to as P bodies. The Pat1 protein is a key component of this complex and an important activator of decapping, yet little is known about its function. In this worh, we analyze Pat1 in Saccharomyces cerevisiae function by deletion and functional analyses. Our results identify two primary functional domains in Pat1: one promoting translation repression and P-body assembly and a second domain promoting mRNA decapping after assembly of the mRNA into a P-body mRNP. In addition, we provide evidence that Pat1 binds RNA and has numerous domain-specific interactions with mRNA decapping factors. These results indicate that Pat1 is an RNA binding protein and a multidomain protein that functions at multiple stages in the process of translation repression and mRNA decapping.
引用
收藏
页码:1298 / 1312
页数:15
相关论文
共 47 条
[11]   Computational modeling of eukaryotic mRNA turnover [J].
Cao, D ;
Parker, R .
RNA, 2001, 7 (09) :1192-1212
[12]   A SMALL SEGMENT OF THE MAT-ALPHA-1 TRANSCRIPT PROMOTES MESSENGER-RNA DECAY IN SACCHAROMYCES-CEREVISIAE - A STIMULATORY ROLE FOR RARE CODONS [J].
CAPONIGRO, G ;
MUHLRAD, D ;
PARKER, R .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (09) :5141-5148
[13]   MULTIPLE FUNCTIONS FOR POLY(A)-BINDING PROTEIN IN MESSENGER-RNA DECAPPING AND DEADENYLATION IN YEAST [J].
CAPONIGRO, G ;
PARKER, R .
GENES & DEVELOPMENT, 1995, 9 (19) :2421-2432
[14]   Eukaryotic mRNA decapping [J].
Coller, J ;
Parker, R .
ANNUAL REVIEW OF BIOCHEMISTRY, 2004, 73 :861-890
[15]   General translational repression by activators of mRNA decapping [J].
Coller, J ;
Parker, R .
CELL, 2005, 122 (06) :875-886
[16]   The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes [J].
Coller, JM ;
Tucker, M ;
Sheth, U ;
Valencia-Sanchez, MA ;
Parker, R .
RNA, 2001, 7 (12) :1717-1727
[17]   Cytoplasmic foci are sites of mRNA decay in human cells [J].
Cougot, N ;
Babajko, S ;
Séraphin, B .
JOURNAL OF CELL BIOLOGY, 2004, 165 (01) :31-40
[18]   A TURNOVER PATHWAY FOR BOTH STABLE AND UNSTABLE MESSENGER-RNAS IN YEAST - EVIDENCE FOR A REQUIREMENT FOR DEADENYLATION [J].
DECKER, CJ ;
PARKER, R .
GENES & DEVELOPMENT, 1993, 7 (08) :1632-1643
[19]   The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif [J].
Dunckley, T ;
Parker, R .
EMBO JOURNAL, 1999, 18 (19) :5411-5422
[20]   P bodies: at the crossroads of post-transcriptional pathways [J].
Eulalio, Ana ;
Behm-Ansmant, Isabelle ;
Izaurralde, Elisa .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2007, 8 (01) :9-22