Local Structural Disorder and Relaxation in SnO2 Nanostructures Studied by 119Sn MAS NMR and 119Sn Mossbauer Spectroscopy

被引:43
作者
Indris, Sylvio [1 ]
Scheuermann, Marco [1 ]
Becker, Sebastian M. [1 ,2 ]
Sepelak, Vladimir [1 ]
Kruk, Robert [1 ]
Suffner, Jens [1 ,3 ]
Gyger, Fabian [2 ,4 ]
Feldmann, Claus [2 ,4 ]
Ulrich, Anne S. [2 ,5 ,6 ]
Hahn, Horst [1 ,2 ,3 ]
机构
[1] Karlsruhe Inst Technol, Inst Nanotechnol, D-76021 Karlsruhe, Germany
[2] Karlsruhe Inst Technol, DFG Ctr Funct Nanostruct CFN, D-76131 Karlsruhe, Germany
[3] Tech Univ Darmstadt, Karlsruhe Inst Technol, Joint Res Lab Nanomat, D-64287 Darmstadt, Germany
[4] Karlsruhe Inst Technol, Inst Inorgan Chem, D-76131 Karlsruhe, Germany
[5] Karlsruhe Inst Technol, Inst Organ Chem, D-76131 Karlsruhe, Germany
[6] Karlsruhe Inst Technol, Inst Biol Interfaces IBG 2, D-76021 Karlsruhe, Germany
关键词
TIN OXIDE; NANOCRYSTALLINE; SIZE; FABRICATION; DIFFUSION; SHAPE; NANOPARTICLES; PERCOLATION; COMPOSITES; TRANSPORT;
D O I
10.1021/jp200651m
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We studied the local structural disorder and relaxation in different nanostructures of SnO2 by using Sn-119 MAS NMR in combination with Sn-119 Mossbauer spectroscopy. We investigated nanocrystalline powders with an average crystallite size of 8 nm as well as hollow spheres with a wall thickness of 3 nm and a diameter of 14 nm, and compared the results to coarse-grained materials. Whereas the uniform SnO6 octahedra in the coarse-grained material show a well-known distortion and thus large electric field gradients, the nanocrystalline SnO2 exhibits a structural relaxation leading to a distribution of local environments and more symmetric octahedra. The SnO2 hollow spheres show strong local disorder in combination with highly asymmetric environments around the Sn atoms.
引用
收藏
页码:6433 / 6437
页数:5
相关论文
共 48 条
[1]   Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles [J].
Ahn, HJ ;
Choi, HC ;
Park, KW ;
Kim, SB ;
Sung, YE .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (28) :9815-9820
[2]   Semiconductor clusters, nanocrystals, and quantum dots [J].
Alivisatos, AP .
SCIENCE, 1996, 271 (5251) :933-937
[4]   The impact of nanoscience on heterogeneous catalysis [J].
Bell, AT .
SCIENCE, 2003, 299 (5613) :1688-1691
[5]   Synthesis and characterization of nanocrystalline SnO2 and fabrication of lithium cell using nano-SnO2 [J].
Bose, AC ;
Kalpana, D ;
Thangadurai, P ;
Ramasamy, S .
JOURNAL OF POWER SOURCES, 2002, 107 (01) :138-141
[6]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[7]   HIGH-RESOLUTION SOLID-STATE SN-119 NUCLEAR MAGNETIC-RESONANCE SPECTROSCOPY OF TERNARY TIN OXIDES [J].
CLAYDEN, NJ ;
DOBSON, CM ;
FERN, A .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1989, (05) :843-847
[8]   CHEMICAL-SHIFT ANISOTROPY AND INDIRECT COUPLING IN SNO2 AND SNO [J].
COSSEMENT, C ;
DARVILLE, J ;
GILLES, JM ;
NAGY, JB ;
FERNANDEZ, C ;
AMOUREUX, JP .
MAGNETIC RESONANCE IN CHEMISTRY, 1992, 30 (03) :263-270
[9]   Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composites [J].
Courtney, IA ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997, 144 (06) :2045-2052
[10]   CATALYTIC-OXIDATION OF CARBON-MONOXIDE ON TIN(IV) OXIDE [J].
FULLER, MJ ;
WARWICK, ME .
JOURNAL OF CATALYSIS, 1973, 29 (03) :441-450