On applying linear discriminant analysis for multi-labeled problems

被引:40
作者
Park, Cheong Hee [1 ]
Lee, Moonhwi [1 ]
机构
[1] Chungnam Natl Univ, Dept Comp Sci & Engn, Taejon 305763, South Korea
基金
新加坡国家研究基金会;
关键词
dimension reduction; linear discriminant analysis; multi-labeled problems; text categorization;
D O I
10.1016/j.patrec.2008.01.003
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Linear discriminant analysis (LDA) is one of the most popular dimension reduction methods, but it is originally focused on a single-abeled problem. In this paper, we derive the formulation for applying LDA for a multi-labeled problem. We also propose a generalized LDA algorithm which is effective in a high dimensional multi-labeled problem. Experimental results demonstrate that by considering multi-labeled structure, LDA can achieve computational efficiency and also improve classification performances. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:878 / 887
页数:10
相关论文
共 22 条
[1]  
BELLHUMEUR P, 1997, IEEE T PATTERN ANAL, V19, P711
[2]   A new LDA-based face recognition system which can solve the small sample size problem [J].
Chen, LF ;
Liao, HYM ;
Ko, MT ;
Lin, JC ;
Yu, GJ .
PATTERN RECOGNITION, 2000, 33 (10) :1713-1726
[3]  
Elisseeff A, 2002, ADV NEUR IN, V14, P681
[4]  
ELISSEEFF A, 2001, KERNEL METHODS MULTI
[5]   REGULARIZED DISCRIMINANT-ANALYSIS [J].
FRIEDMAN, JH .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1989, 84 (405) :165-175
[6]  
Fukunaga K., 1990, INTRO STAT PATTERN R
[7]  
GODBOLE S, 2004, PAKDD 2004
[8]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[9]   Generalizing discriminant analysis using the generalized singular value decomposition [J].
Howland, P ;
Park, H .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (08) :995-1006
[10]  
KOLMAN B, 2005, INTRO LINEAR ALGEBRA