Conformal "thin-sandwich" data for the initial-value problem of general relativity

被引:225
作者
York, JW [1 ]
机构
[1] N Carolina State Univ, Dept Phys, Raleigh, NC 27695 USA
关键词
D O I
10.1103/PhysRevLett.82.1350
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The initial-value problem is posed by giving a conformal three-metric on each of two nearby spacelike hypersurfaces, the proper-time separation of the hypersurfaces up to a multiplier to be determined, and the mean (extrinsic) curvature of one slice. The resulting equations have the same elliptic form as in the one-hypersurface formulation. The metrical roots of this form are revealed by a conformal "thin sandwich" viewpoint coupled with the transformation properties of the lapse function. [S0031-9007(94)08400-8].
引用
收藏
页码:1350 / 1353
页数:4
相关论文
共 26 条
[1]   Hamiltonian time evolution for general relativity [J].
Anderson, A ;
York, JW .
PHYSICAL REVIEW LETTERS, 1998, 81 (06) :1154-1157
[2]  
Anderson A., 1997, TOPOL METH NONLIN AN, V10, P353
[3]   NEW HAMILTONIAN-FORMULATION OF GENERAL-RELATIVITY [J].
ASHTEKAR, A .
PHYSICAL REVIEW D, 1987, 36 (06) :1587-1602
[4]   3-DIMENSIONAL GEOMETRY AS CARRIER OF INFORMATION ABOUT TIME [J].
BAIERLEIN, RF ;
SHARP, DH ;
WHEELER, JA .
PHYSICAL REVIEW, 1962, 126 (05) :1864-&
[5]   ON THE RESTRICTED VALIDITY OF THE THIN SANDWICH CONJECTURE [J].
BARTNIK, R ;
FODOR, G .
PHYSICAL REVIEW D, 1993, 48 (08) :3596-3599
[6]  
Choquet-Bruhat Y., 1980, General relativity and gravitation. One hundred years after the birth of Albert Einstein, vol.1, P99
[7]   HYPERBOLICITY OF THE 3+1 SYSTEM OF EINSTEIN EQUATIONS [J].
CHOQUETBRUHAT, Y ;
RUGGERI, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 89 (02) :269-275
[8]  
CHOQUETBRUHAT Y, 1995, CR ACAD SCI I-MATH, V321, P1089
[9]  
CHOQUETBRUHAT Y, 1997, BANACH CTR PUBLICA 1, V41, P119
[10]  
CHOQUETBRUHAT Y, GRQC9802027