Standardization of real-time PCR gene expression data from independent biological replicates
被引:426
作者:
Willems, Erik
论文数: 0引用数: 0
h-index: 0
机构:
Burnham Inst Med Res, Del E Webb Neurosci Aging & Stem Cell Res Ctr, La Jolla, CA 92037 USA
Vrije Univ Brussel, Lab Cell Genet, B-1050 Brussels, BelgiumBurnham Inst Med Res, Del E Webb Neurosci Aging & Stem Cell Res Ctr, La Jolla, CA 92037 USA
Willems, Erik
[1
,2
]
Leyns, Luc
论文数: 0引用数: 0
h-index: 0
机构:
Vrije Univ Brussel, Lab Cell Genet, B-1050 Brussels, BelgiumBurnham Inst Med Res, Del E Webb Neurosci Aging & Stem Cell Res Ctr, La Jolla, CA 92037 USA
Leyns, Luc
[2
]
Vandesompele, Jo
论文数: 0引用数: 0
h-index: 0
机构:
Ghent Univ Hosp, Ctr Med Genet, B-9000 Ghent, BelgiumBurnham Inst Med Res, Del E Webb Neurosci Aging & Stem Cell Res Ctr, La Jolla, CA 92037 USA
Vandesompele, Jo
[3
]
机构:
[1] Burnham Inst Med Res, Del E Webb Neurosci Aging & Stem Cell Res Ctr, La Jolla, CA 92037 USA
Gene expression analysis by quantitative reverse transcription PCR (qRT-PCR) allows accurate quantifications of messenger RNA (mRNA) levels over different samples. Corrective methods for different steps in the qRT-PCR reaction have been reported; however, statistical analysis and presentation of substantially variable biological repeats present problems and are often not meaningful, for example, in a biological system such as mouse embryonic stem cell differentiation. Based on a series of sequential corrections, including log transformation, mean centering, and autoscaling, we describe a robust and powerful standardization method that can be used on highly variable data sets to draw statistically reliable conclusions. Published by Elsevier Inc.