Convergence in gradient-like systems which are asymptotically autonomous and analytic

被引:59
作者
Huang, SZ [1 ]
Takác, P [1 ]
机构
[1] Univ Rostock, Fachbereich Math, D-18055 Rostock, Germany
关键词
asymptotically autonomous dynamical process; gradient-like system; stabilization; Lojasiewicz-Simon-type inequality; Ginzburg-Landau equations; gauge;
D O I
10.1016/S0362-546X(00)00145-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:675 / 698
页数:24
相关论文
共 32 条
[1]  
ABRIKOSOV AA, 1988, FUNDAMENATALS THEORY
[2]  
[Anonymous], 1982, DYNAM SYST
[3]  
[Anonymous], 1992, ACTA MATH U COMENIAN
[4]  
[Anonymous], EXISTENCE THEOREMS E
[5]   ON A NONSTATIONARY GINZBURG-LANDAU SUPERCONDUCTIVITY MODEL [J].
CHEN, ZM ;
HOFFMANN, KH ;
LIANG, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1993, 16 (12) :855-875
[6]  
de Gennes P. G., 1966, SUPERCONDUCTIVITY ME
[7]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[8]  
DU Q, 1994, APPL ANAL, V53, P1
[9]  
FEIREISL E, 1999, IN PRESS J DYNAMICS
[10]  
FEIREISL E, 1999, LONG TIME STABILIZAT