Convergence in gradient-like systems which are asymptotically autonomous and analytic

被引:59
作者
Huang, SZ [1 ]
Takác, P [1 ]
机构
[1] Univ Rostock, Fachbereich Math, D-18055 Rostock, Germany
关键词
asymptotically autonomous dynamical process; gradient-like system; stabilization; Lojasiewicz-Simon-type inequality; Ginzburg-Landau equations; gauge;
D O I
10.1016/S0362-546X(00)00145-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:675 / 698
页数:24
相关论文
共 32 条
[21]  
Matano H., 1978, J. Math. Kyoto Univ., V18, P221, DOI 10.1215/kjm/1250522572
[22]  
Neuberger J. W., 1997, Lecture Notes in Math., V1670
[23]   Nonconvergent bounded trajectories in semilinear heat equations [J].
Polacik, P ;
Rybakowski, KP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 124 (02) :472-494
[24]  
Raugel G, 1995, LECT NOTES MATH, V1609, P208
[25]   Convergence of solutions to the equation of quasi-static approximation of viscoelasticity with capillarity [J].
Rybka, P ;
Hoffmann, KH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 226 (01) :61-81
[26]   Convergence of solutions to Cahn-Hilliard equation [J].
Rybka, P ;
Hoffmann, KH .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1999, 24 (5-6) :1055-1077
[27]   A TIME DEPENDENT GINZBURG-LANDAU EQUATION AND ITS APPLICATION TO PROBLEM OF RESISTIVITY IN MIXED STATE [J].
SCHMID, A .
PHYSIK DER KONDENSITERTEN MATERIE, 1966, 5 (04) :302-+
[29]   TIME-DEPENDENT GINZBURG-LANDAU EQUATIONS OF SUPERCONDUCTIVITY [J].
TANG, Q ;
WANG, S .
PHYSICA D-NONLINEAR PHENOMENA, 1995, 88 (3-4) :139-166
[30]  
TANG Q, 1995, COMMUN PART DIFF EQ, V20, P1