Redox control, redox signaling, and redox homeostasis in plant cells

被引:100
作者
Dietz, KJ [1 ]
机构
[1] Univ Bielefeld, Fac Biol, D-33501 Bielefeld, Germany
来源
INTERNATIONAL REVIEW OF CYTOLOGY - A SURVEY OF CELL BIOLOGY, VOL 228 | 2003年 / 228卷
关键词
glutathione; metabolism; photosynthesis; plant cells; redox regulation; signal transduction; thiol proteins;
D O I
10.1016/S0074-7696(03)28004-9
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Redox chemistry is a key feature of life. Oxidized substrates are reduced to synthesize functional molecules; reduced substrates are oxidized for energy supply. In addition, cells must fight against uncontrolled oxidation of essential constituents, a process that continuously occurs in an atmosphere of 21% O2. The redox situation is further complicated in plants with their highly reactive photosynthetic metabolism. To this end it is now well established that redox regulation is a central element in adjusting plant metabolism and development to the prevailing environmental conditions. This review introduces general redox chemistry and the main components of the cellular redox network, namely pyridine nucleotides, ascorbate, glutathione, lipoic acid, tocopherol, thioredoxins, glutaredoxins, peroxiredoxins, and other thiol proteins. Examples for redox sensing, transduction, redox-regulated enzymes and transcription, and the function of regulatory circuits are presented. Emphasis is placed on redox regulation of photosynthesis, which is the best understood metabolism governed by redox control on essentially all levels, ranging from gene transcription to translation, assembly and turnover, as well as short-term adaptation by state transition and enzyme activity. Increasing evidence shows the importance of redox regulation in the context of transport, plant development, and programmed cell death.
引用
收藏
页码:141 / 193
页数:53
相关论文
共 194 条
[31]   Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant [J].
Conklin, PL ;
Williams, EH ;
Last, RL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (18) :9970-9974
[32]   In vivo interactions between photosynthesis, mitorespiration, and chlororespiration in Chlamydomonas reinhardtii [J].
Cournac, L ;
Latouche, G ;
Cerovic, Z ;
Redding, K ;
Ravenel, J ;
Peltier, G .
PLANT PHYSIOLOGY, 2002, 129 (04) :1921-1928
[33]   Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress [J].
Creissen, G ;
Firmin, J ;
Fryer, M ;
Kular, B ;
Leyland, N ;
Reynolds, H ;
Pastori, G ;
Wellburn, F ;
Baker, N ;
Wellburn, A ;
Mullineaux, P .
PLANT CELL, 1999, 11 (07) :1277-1291
[34]   Redox signaling in chloroplasts:: Cleavage of disulfides by an iron-sulfur cluster [J].
Dai, SD ;
Schwendtmayer, C ;
Schürmann, P ;
Ramaswamy, S ;
Eklund, H .
SCIENCE, 2000, 287 (5453) :655-658
[35]   ADP-DEPENDENT PHOSPHORYLATION REGULATES RNA-BINDING IN-VITRO - IMPLICATIONS IN LIGHT-MODULATED TRANSLATION [J].
DANON, A ;
MAYFIELD, SP .
EMBO JOURNAL, 1994, 13 (09) :2227-2235
[36]   Characterization and possible redox regulation of the purified calmodulin-dependent NAD+ kinase from Lycopersicon pimpinellifolium [J].
Delumeau, O ;
Renard, M ;
Montrichard, F .
PLANT CELL AND ENVIRONMENT, 2000, 23 (11) :1267-1273
[37]   Regulation of the Arabidopsis transcriptome by oxidative stress [J].
Desikan, R ;
Mackerness, SAH ;
Hancock, JT ;
Neill, SJ .
PLANT PHYSIOLOGY, 2001, 127 (01) :159-172
[38]   Harpin induces activation of the arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6 [J].
Desikan, R ;
Hancock, JT ;
Ichimura, K ;
Shinozaki, K ;
Neill, SJ .
PLANT PHYSIOLOGY, 2001, 126 (04) :1579-1587
[39]   LIGHT AND CO2 LIMITATION OF PHOTOSYNTHESIS AND STATES OF THE REACTIONS REGENERATING RIBULOSE 1,5-BISPHOSPHATE OR REDUCING 3-PHOSPHOGLYCERATE [J].
DIETZ, KJ ;
HEBER, U .
BIOCHIMICA ET BIOPHYSICA ACTA, 1986, 848 (03) :392-401
[40]   RATE-LIMITING FACTORS IN LEAF PHOTOSYNTHESIS .1. CARBON FLUXES IN THE CALVIN CYCLE [J].
DIETZ, KJ ;
HEBER, U .
BIOCHIMICA ET BIOPHYSICA ACTA, 1984, 767 (03) :432-443