Quantum Mechanical Modeling of Catalytic Processes

被引:67
作者
Bell, Alexis T. [1 ]
Head-Gordon, Martin [2 ]
机构
[1] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
来源
ANNUAL REVIEW OF CHEMICAL AND BIOMOLECULAR ENGINEERING, VOL 2 | 2011年 / 2卷
关键词
catalysis; quantum mechanics; density functional theory; thermodynamics; kinetics; DENSITY-FUNCTIONAL THEORY; VANADIUM-OXIDE CATALYSTS; GENERALIZED GRADIENT APPROXIMATIONS; RANGE DISPERSION CORRECTIONS; NUDGED ELASTIC BAND; P-TOLUIC ACID; OXIDATIVE CARBONYLATION; METHANOL OXIDATION; CHEMICAL-REACTIONS; TRANSITION-STATES;
D O I
10.1146/annurev-chembioeng-061010-114108
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Advances in quantum chemical methods in combination with exponential growth in the computational speed of computers have enabled researchers in the field of catalysis to apply electronic structure calculations to a wide variety of increasingly complex problems. Such calculations provide insights into why and how changes in the composition and structure of catalytically active sites affect their activity and selectivity for targeted reactions. The aim of this review is to survey the recent advances in the methods used to make quantum chemical calculations and to define transition states as well as to illustrate the application of these methods to a selected series of examples taken from the authors' recent work.
引用
收藏
页码:453 / 477
页数:25
相关论文
共 117 条
[11]   Mechanistic studies of methanol oxidation to formaldehyde on isolated vanadate sites supported on MCM-48 [J].
Bronkema, Jason L. ;
Bell, Alexis T. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (01) :420-430
[12]   The origin of the support effect in supported metal oxide catalysts: in situ infrared and kinetic studies during methanol oxidation [J].
Burcham, LJ ;
Wachs, IE .
CATALYSIS TODAY, 1999, 49 (04) :467-484
[13]   Quantification of active sites for the determination of methanol oxidation turn-over frequencies using methanol chemisorption and in situ infrared techniques. 1. Supported metal oxide catalysts [J].
Burcham, LJ ;
Briand, LE ;
Wachs, IE .
LANGMUIR, 2001, 17 (20) :6164-6174
[14]   The origin of the ligand effect in metal oxide catalysts:: Novel fixed-bed in situ infrared and kinetic studies during methanol oxidation [J].
Burcham, LJ ;
Badlani, M ;
Wachs, IE .
JOURNAL OF CATALYSIS, 2001, 203 (01) :104-121
[15]   In situ IR, Raman, and UV-Vis DRS spectroscopy of supported vanadium oxide catalysts during methanol oxidation [J].
Burcham, LJ ;
Deo, G ;
Gao, XT ;
Wachs, IE .
TOPICS IN CATALYSIS, 2000, 11 (1-4) :85-100
[16]   Remarks on the proper use of the broken symmetry approach to magnetic coupling [J].
Caballol, R ;
Castell, O ;
Illas, F ;
Moreira, PR ;
Malrieu, JP .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (42) :7860-7866
[17]   Activation of C2-C4 alkanes over acid and bifunctional zeolite catalysts [J].
Caeiro, G. ;
Carvalho, R. H. ;
Wang, X. ;
Lemos, M. A. N. D. A. ;
Lemos, F. ;
Guisnet, M. ;
Ribeiro, F. Ramoa .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2006, 255 (1-2) :131-158
[18]   Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) :6615-6620
[19]   Systematic optimization of long-range corrected hybrid density functionals [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (08)
[20]   Orbital-free density functional theory: Linear scaling methods for kinetic potentials, and applications to solid Al and Si [J].
Chai, Jeng-Da ;
Ligneres, Vincent L. ;
Ho, Gregory ;
Carter, Emily A. ;
Weeks, John D. .
CHEMICAL PHYSICS LETTERS, 2009, 473 (4-6) :263-267