Nonlinear qubit transformations

被引:6
作者
Hardy, L [1 ]
Song, DD [1 ]
机构
[1] Univ Oxford, Dept Phys, Clarendon Lab, Ctr Quantum Computat, Oxford OX1 3PU, England
来源
PHYSICAL REVIEW A | 2001年 / 64卷 / 03期
关键词
D O I
10.1103/PhysRevA.64.032301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We generalize our previous results of universal linear manipulations [Phys. Rev. A 63, 032304 (2001)] to investigate three types of nonlinear qubit transformations using measurement and quantum-based schemes. First. nonlinear rotations are studied. We rotate different parts of a Bloch sphere in opposite directions about the z axis. The second transformation is a map that sends a qubit to its orthogonal state. We consider the case in which the orthogonal state is applied to only a partial area of a Bloch sphere. We also study nonlinear general transformation, i.e., (theta,phi)-->(theta-alpha,phi), again applied only to part of the Bloch sphere. In order to achieve these three operations, we consider different measurement preparations and derive the optimal average (instead of universal) quantum unitary transformations. We also introduce a simple method for a qubit measurement and its application to other cases.
引用
收藏
页数:11
相关论文
共 22 条
[1]   Optimal universal and state-dependent quantum cloning [J].
Bruss, D ;
DiVincenzo, DP ;
Ekert, A ;
Fuchs, CA ;
Macchiavello, C ;
Smolin, JA .
PHYSICAL REVIEW A, 1998, 57 (04) :2368-2378
[2]   Optimal universal quantum cloning and state estimation [J].
Bruss, D ;
Ekert, A ;
Macchiavello, C .
PHYSICAL REVIEW LETTERS, 1998, 81 (12) :2598-2601
[3]  
Buzek V, 1999, PHYS REV A, V60, pR2626, DOI 10.1103/PhysRevA.60.R2626
[4]   Quantum disentanglers [J].
Buzek, V ;
Hillery, M .
PHYSICAL REVIEW A, 2000, 62 (05) :052303-052301
[5]   Universal optimal cloning of arbitrary quantum states: From qubits to quantum registers [J].
Buzek, V ;
Hillery, M .
PHYSICAL REVIEW LETTERS, 1998, 81 (22) :5003-5006
[6]   Quantum copying: Beyond the no-cloning theorem [J].
Buzek, V ;
Hillery, M .
PHYSICAL REVIEW A, 1996, 54 (03) :1844-1852
[7]  
Buzek V, 2000, PHYS REV A, V62, DOI [10.1103/PhysRevA.62.022303, 10.1103/PhysRevA.60.R2626]
[8]   Universal-NOT gate [J].
Buzek, V ;
Hillery, M ;
Werner, F .
JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) :211-232
[9]   Universal algorithm for optimal estimation of quantum states from finite ensembles via realizable generalized measurement [J].
Derka, R ;
Buzek, V ;
Ekert, AK .
PHYSICAL REVIEW LETTERS, 1998, 80 (08) :1571-1575
[10]   Quantum computation and Shor's factoring algorithm [J].
Ekert, A ;
Jozsa, R .
REVIEWS OF MODERN PHYSICS, 1996, 68 (03) :733-753