Synchronization in complex networks by time-varying couplings

被引:9
作者
Chen, L. [1 ]
Wu, L. [1 ]
Zhu, S. [1 ]
机构
[1] Suzhou Univ, Sch Phys Sci & Technol, Suzhou 215006, Jiangsu, Peoples R China
关键词
D O I
10.1140/epjd/e2008-00113-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Synchronization in networks of complex topologies using couplings of time-varying strength is numerically investigated. The time-dependencies of coupling strengths are coupled to the dynamics of the nodes in a way to enhance synchronization. By time-varying couplings, oscillators are found to take quite a short time to reach synchronization state when the couplings are relatively strong. Even when a nearly regular networks of large-size with few shortcuts is difficult to be synchronized by fixed couplings, the time-varying couplings can easily enhance the emergence of synchronization.
引用
收藏
页码:405 / 409
页数:5
相关论文
共 28 条
[1]   Statistical mechanics of complex networks [J].
Albert, R ;
Barabási, AL .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :47-97
[2]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[3]   Synchronization in small-world systems [J].
Barahona, M ;
Pecora, LM .
PHYSICAL REVIEW LETTERS, 2002, 89 (05) :054101/1-054101/4
[4]   Connection graph stability method for synchronized coupled chaotic systems [J].
Belykh, VN ;
Belykh, IV ;
Hasler, M .
PHYSICA D-NONLINEAR PHENOMENA, 2004, 195 (1-2) :159-187
[5]   Bose-Einstein condensation in complex networks [J].
Bianconi, G ;
Barabási, AL .
PHYSICAL REVIEW LETTERS, 2001, 86 (24) :5632-5635
[6]   Synchronization in dynamical networks: Evolution along commutative graphs [J].
Boccaletti, S. ;
Hwang, D. -U. ;
Chavez, M. ;
Amann, A. ;
Kurths, J. ;
Pecora, L. M. .
PHYSICAL REVIEW E, 2006, 74 (01)
[7]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[8]   Transitions to synchrony in coupled bursting neurons [J].
Dhamala, M ;
Jirsa, VK ;
Ding, MZ .
PHYSICAL REVIEW LETTERS, 2004, 92 (02) :4
[9]   Three coupled oscillators as a universal probe of synchronization stability in coupled oscillator arrays [J].
Fink, KS ;
Johnson, G ;
Carroll, T ;
Mar, D ;
Pecora, L .
PHYSICAL REVIEW E, 2000, 61 (05) :5080-5090
[10]   Universal behavior of load distribution in scale-free networks [J].
Goh, KI ;
Kahng, B ;
Kim, D .
PHYSICAL REVIEW LETTERS, 2001, 87 (27) :278701-278701