The peptidyl-prolyl isomerase Pin1 interacts with hSpt5 phosphorylated by Cdk9

被引:51
作者
Lavoie, SB
Albert, AL
Handa, H
Vincent, M
Bensaude, O
机构
[1] Ecole Normale Super, UMR 8541 CNRS, F-75230 Paris 05, France
[2] Univ Laval, Dept Med, Quebec City, PQ G1K 7P4, Canada
[3] Univ Laval, CREFSIP, Quebec City, PQ G1K 7P4, Canada
[4] Tokyo Inst Technol, Fac Biosci & Biotechnol, Yokohama, Kanagawa 2268501, Japan
基金
加拿大自然科学与工程研究理事会;
关键词
RNA polymerase II; Spt5; phosphorylation; Cdk9; Pin1;
D O I
10.1006/jmbi.2001.4991
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We identify and characterize several phosphorylated forms of the hSpt5 subunit of the DRB sensitivity-inducing factor (DSIF). A 175-kDa phosphorylated form of hSpt5 is bound to nuclei of interphase HeLa cells. This form is rapidly dephosphorylated when cultured cells are exposed to various drugs belonging to distinct chemical families. All these compounds are known to inhibit the protein kinase Cdk9, which phosphorylates in vitro hSpt5 and Rpb1, the largest subunit of RNA polymerase II. The efficiency to promote the dephosphorylation of both proteins matches their capacity to inhibit purified Cdk9 kinase, suggesting that Cdk9 is the major kinase phosphorylating hSpt5 and Rpb1 in vivo. We show that Cdk9 phosphorylates both the CTR1 and the CTR2 domains of recombinant hSpt5. These domains contain numerous serine-proline and threonine-proline residues similar to those found in the carboxyl-terminal domain (CTD) of Rpb1. The structural homology between hSpt5 CTRs and the Rpb1 CTD is further highlighted by the presence on both proteins of a phosphoepitope recognized by the monoclonal antibody CC-3. Of particular interest, the peptidyl-prolyl isomerase Pin1 interacts with Cdk9-phosphorylated hSpt5. Cdk9 dependent phosphorylation of Rpb1 and hSpt5 followed by Pin1 interaction might thus contribute to the regulation of transcription, pre-mRNA maturation, and the dynamics of these proteins in interphase and mitosis. (C) 2001 Academic Press.
引用
收藏
页码:675 / 685
页数:11
相关论文
共 48 条
[1]   TFIIH is negatively regulated by cdk8-containing mediator complexes [J].
Akoulitchev, S ;
Chuikov, S ;
Reinberg, D .
NATURE, 2000, 407 (6800) :102-106
[2]  
Albert A, 1999, J CELL SCI, V112, P2493
[3]   High-resolution localization of Drosophila Spt5 and Spt6 at heat shock genes in vivo:: roles in promoter proximal pausing and transcription elongation [J].
Andrulis, ED ;
Guzmán, E ;
Döring, P ;
Werner, J ;
Lis, JT .
GENES & DEVELOPMENT, 2000, 14 (20) :2635-2649
[4]  
BENSAUDE O, 1999, BIOCH CELL BIOL, V77, P1
[5]   Coupling RNA polymerase II transcription with pre-mRNA processing [J].
Bentley, D .
CURRENT OPINION IN CELL BIOLOGY, 1999, 11 (03) :347-351
[6]  
BISOTTO S, 1995, J CELL SCI, V108, P1873
[7]   Transcription-independent phosphorylation of the RNA polymerase IIC-terminal domain (CTD) involves ERK kinases (MEK1/2) [J].
Bonnet, F ;
Vigneron, M ;
Bensaude, O ;
Dubois, MF .
NUCLEIC ACIDS RESEARCH, 1999, 27 (22) :4399-4404
[8]   The transcriptional inhibitors, actinomycin D and α-amanitin, activate the HIV-1 promoter and favor phosphorylation of the RNA polymerase IIC-terminal domain [J].
Cassé, C ;
Giannoni, F ;
Nguyen, VT ;
Dubois, MF ;
Bensaude, O .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (23) :16097-16106
[9]   Flavopiridol inhibits P-TEFb and blocks HIV-1 replication [J].
Chao, SH ;
Fujinaga, K ;
Marion, JE ;
Taube, R ;
Sausville, EA ;
Senderowicz, AM ;
Peterlin, BM ;
Price, DH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (37) :28345-28348
[10]   Flavopiridol inactivates P-TEFb and blocks most RNA polymerase II transcription in vivo [J].
Chao, SH ;
Price, DH .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (34) :31793-31799