Evaluation of procedures to acclimate a microbial fuel cell for electricity production

被引:435
作者
Kim, JR
Min, B
Logan, BE [1 ]
机构
[1] Penn State Univ, Dept Civil & Environm Engn, University Pk, PA 16802 USA
[2] Penn State Univ, H2E Ctr, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
10.1007/s00253-004-1845-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A microbial fuel cell (MFC) is a relatively new type of fixed film bioreactor for wastewater treatment, and the most effective methods for inoculation are not well understood. Various techniques to enrich electrochemically active bacteria on an electrode were therefore studied using anaerobic sewage sludge in a two-chambered MFC. With a porous carbon paper anode electrode, 8 mW/m(2) of power was generated within 50 h with a Coulombic efficiency (CE) of 40%. When an iron oxide-coated electrode was used, the power and the CE reached 30 mW/m(2) and 80%, respectively. A methanogen inhibitor (2-bromoethanesulfonate) increased the CE to 70%. Bacteria in sludge were enriched by serial transfer using a ferric iron medium, but when this enrichment was used in a MFC the power was lower (2 mW/m2) than that obtained with the original inoculum. By applying biofilm scraped from the anode of a working MFC to a new anode electrode, the maximum power was increased to 40 mW/m2. When a second anode was introduced into an operating MFC the acclimation time was not reduced and the total power did not increase. These results suggest that these active inoculating techniques could increase the effectiveness of enrichment, and that start up is most successful when the biofilm is harvested from the anode of an existing MFC and applied to the new anode.
引用
收藏
页码:23 / 30
页数:8
相关论文
共 31 条
[1]  
Allen MJ, 1972, METHOD MICROBIOL, P247
[2]   MICROBIAL FUEL-CELLS - ELECTRICITY PRODUCTION FROM CARBOHYDRATES [J].
ALLEN, RM ;
BENNETTO, HP .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 1993, 39 :27-40
[3]   Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste [J].
Angenent, LT ;
Sung, SW ;
Raskin, L .
WATER RESEARCH, 2002, 36 (18) :4648-4654
[4]   ANODIC REACTIONS IN MICROBIAL FUEL-CELLS [J].
BENNETTO, HP ;
STIRLING, JL ;
TANAKA, K ;
VEGA, CA .
BIOTECHNOLOGY AND BIOENGINEERING, 1983, 25 (02) :559-568
[5]   Electrode-reducing microorganisms that harvest energy from marine sediments [J].
Bond, DR ;
Holmes, DE ;
Tender, LM ;
Lovley, DR .
SCIENCE, 2002, 295 (5554) :483-485
[6]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555
[7]   Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J].
Chaudhuri, SK ;
Lovley, DR .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1229-1232
[8]   Specificity of chloroform, 2-bromoethanesulfonate and fluoroacetate to inhibit methanogenesis and other anaerobic processes in anoxic rice field soil [J].
Chidthaisong, A ;
Conrad, R .
SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (07) :977-988
[9]   2-bromoethanesulfonate affects bacteria in a trichloroethene-dechlorinating culture [J].
Chiu, PC ;
Lee, M .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67 (05) :2371-2374
[10]   The impact of fermentative organisms on carbon flow in methanogenic systems under constant low-substrate conditions [J].
Dollhopf, SL ;
Hashsham, SA ;
Dazzo, FB ;
Hickey, RF ;
Criddle, CS ;
Tiedje, JM .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2001, 56 (3-4) :531-538