Isolation of multipotent neural precursors residing in the cortex of the adult human brain

被引:238
作者
Arsenijevic, Y [1 ]
Villemure, JG
Brunet, JF
Bloch, JJ
Déglon, N
Kostic, C
Zurn, A
Aebischer, P
机构
[1] Univ Lausanne, Gene Therapy Ctr, Sch Med, CH-1011 Lausanne, Switzerland
[2] Univ Lausanne, Div Surg Res, Sch Med, CH-1011 Lausanne, Switzerland
[3] Eye Hosp Jules Gonin, Unit Oculogenet, CH-1004 Lausanne, Switzerland
[4] Dept Neurosurg Lausanne, CH-1011 Lausanne, Switzerland
[5] Univ Geneva, Sch Med, CH-1011 Lausanne, Switzerland
关键词
stem cells; neurogenesis; amygdala; SVZ; gliogenesis; lentivirus; oligodendrocytes; human brain; neurite branching; GFAP;
D O I
10.1006/exnr.2001.7691
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Multipotent precursors able to generate neurons, astrocytes, and oligodendrocytes have previously been isolated from human brain embryos and recently from neurogenic regions of the adult human brains. The isolation of multipotent neural precursors from adult human should open new perspectives to study adult neurogenesis and for brain repair. The present study describes the in vitro isolation from adult human brains of a progenitor responsive to both epidermal and basic fibroblast growth factors that forms spheres as it proliferates. Single spheres derived from various regions of the brain generate in vitro neurons, astrocytes, and oligodendrocytes. The clonal origin of the spheres was revealed by genomic viral insertion using lentiviral vector. Interestingly, this vector appears to be a potent tool for gene transfer into human neural progeny. Ninety-six percent of the spheres investigated were multipotent. Multipotent precursors were isolated from all brain regions studied, including the temporal and the frontal cortex, the amygdala, the hippocampus, and the ventricular zone. This study is the first evidence that primitive precursors such as multipotent precursors exist in the adult human cortex and can reside far from the ventricles. Neurogenesis derived from adult human progenitors differ to murine neurogenesis by the requirement of laminin for oligodendrocyte generation and by the action of basic-fibroblast growth factor and platelet derived growth factor that prevented the formation of oligodendrocytes and neurons. Moreover, the differentiation of human adult precursors seems to differ from fetal ones: adult precursors do not necessitate the removal of mitogen for differentiation. These results indicate that the study of adult multipotent precursors is a new platform to study adult human neurogenesis, potentially generate neural cells for transplantation, and design protocols for in vivo stimulation. (C) 2001 Academic Press.
引用
收藏
页码:48 / 62
页数:15
相关论文
共 63 条
[31]   Neurogenesis in adult human [J].
Murrell, W ;
Bushell, GR ;
Livesey, J ;
McGrath, J ;
MacDonald, KPA ;
Bates, PR ;
MackaySim, A .
NEUROREPORT, 1996, 7 (06) :1189-1194
[32]   In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector [J].
Naldini, L ;
Blomer, U ;
Gallay, P ;
Ory, D ;
Mulligan, R ;
Gage, FH ;
Verma, IM ;
Trono, D .
SCIENCE, 1996, 272 (5259) :263-267
[33]   Isolation and characterization of neural stem cells from the adult human olfactory bulb [J].
Pagano, SF ;
Impagnatiello, F ;
Girelli, M ;
Cova, L ;
Grioni, E ;
Onofri, M ;
Cavallaro, M ;
Etteri, S ;
Vitello, F ;
Giombini, S ;
Solero, CL ;
Parati, EA .
STEM CELLS, 2000, 18 (04) :295-300
[34]   The adult rat hippocampus contains primordial neural stem cells [J].
Palmer, TD ;
Takahashi, J ;
Gage, FH .
MOLECULAR AND CELLULAR NEUROSCIENCE, 1997, 8 (06) :389-404
[35]  
Palmer TD, 1999, J NEUROSCI, V19, P8487
[36]   Fibroblast growth factor-2 brain-derived neurotrophic factor-associated maturation of new neurons generated from adult human subependymal cells [J].
Pincus, DW ;
Keyoung, HM ;
Harrison-Restelli, C ;
Goodman, RR ;
Fraser, RAR ;
Edgar, M ;
Sakakibara, S ;
Okano, H ;
Nedergaard, M ;
Goldman, SA .
ANNALS OF NEUROLOGY, 1998, 43 (05) :576-585
[37]   A tripotential glial precursor cell is present in the developing spinal cord [J].
Rao, MS ;
Noble, M ;
Mayer-Pröschel, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3996-4001
[38]   SYSTEMATIC WIDESPREAD CLONAL ORGANIZATION IN CEREBRAL-CORTEX [J].
REID, CB ;
LIANG, I ;
WALSH, C .
NEURON, 1995, 15 (02) :299-310
[39]   Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell [J].
Reynolds, BA ;
Weiss, S .
DEVELOPMENTAL BIOLOGY, 1996, 175 (01) :1-13
[40]   A MULTIPOTENT EGF-RESPONSIVE STRIATAL EMBRYONIC PROGENITOR-CELL PRODUCES NEURONS AND ASTROCYTES [J].
REYNOLDS, BA ;
TETZLAFF, W ;
WEISS, S .
JOURNAL OF NEUROSCIENCE, 1992, 12 (11) :4565-4574