Blowup of small data solutions for a quasilinear wave equation in two space dimensions

被引:74
作者
Alinhac, S [1 ]
机构
[1] Univ Paris Sud, F-91405 Orsay, France
关键词
D O I
10.2307/121020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For the quasilinear wave equation partial derivative(t)(2)uu - Delta u = u(t)u(tt), we analyze the long-time behavior of classical solutions with small (not rotationally invariant) data. We give a complete asymptotic expansion of the lifespan and describe the solution close to the blowup point. It turns out that this solution is a "blowup solution of cusp type," according to the terminology of the author [3].
引用
收藏
页码:97 / 127
页数:31
相关论文
共 12 条
[2]   GEOMETRIC BLOWUP FOR QUASI-LINEAR SYSTEMS [J].
ALINHAC, S .
AMERICAN JOURNAL OF MATHEMATICS, 1995, 117 (04) :987-1017
[5]  
Alinhac S., 1991, OPERATEURS PSEUDO DI
[6]  
Alinhac S., 1995, PROGR NONLINEAR DIFF
[7]  
HORMANDER L, 1987, LECT NOTES MATH, V1256, P214
[8]  
Hormander L., 1997, Mathematiques & Applications (Berlin) [Mathematics & Applications], V26
[9]  
JOHN F, 1985, MAT APL COMPUT, V4, P3
[10]  
JOHN F, 1990, U LECT SERIES AMS, V2