Tore-Supra infrared thermography system, a real steady-state diagnostic

被引:57
作者
Guilhem, D [1 ]
Bondil, JL [1 ]
Bertrand, B [1 ]
Desgranges, C [1 ]
Lipa, M [1 ]
Messina, P [1 ]
Missirlian, M [1 ]
Portafaix, C [1 ]
Reichle, R [1 ]
Roche, H [1 ]
Saille, A [1 ]
机构
[1] CEA, EURATOM Assoc, DSM, DRFC, F-13108 St Paul Les Durance, France
关键词
long pulse operation; infrared thermography; steady-state diagnostic;
D O I
10.1016/j.fusengdes.2005.08.021
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Tore-Supra Tokamak (I-p = 1.5 MA, B-t = 4 T) has been constructed with a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components (PFCs) for high-performance long pulse plasma discharges. When not actively cooled, plasma facing components can only accumulate a limited amount of energy since the temperature increases continuously during the discharge until radiation cooling equals the incoming heat flux. Such an environment is found in the JET Tokamak [JET Team, IAEA-CN-60/Al-3, Seville, 1994] and on TRIAM [M. Sakamoto, H. Nakashima, S. Kawasaki, A. Iyomasa, S.V. Kulkarm, M. Hasegawa, E. Jotaki, H. Zushi, K. Nakamura, K. Hanada, S. Itoh, Static and dynamic properties of recycling in TRIAM-1M, J. Nucl. Mater. 313-316 (2003) 519-523] [Y. Kamada, et al., Nucl. Fusion 3 (1999) 1845]. In the surface temperature of the actively cooled plasma facing components reach steady state within a second. We here the Tore-Supra thermographic system, made of seven endoscope bodies equipped so far with eight infrared (IR) It has to be noted that this diagnostic is the first diagnostic to be actively cooled, as required for steady state. The main of such diagnostic is to prevent the plasma to damage the actively cooled plasma facing components (ACPFCs), which consist of the toroidal pumped limiter (TPL), 7 m(2), and of five radio-frequency antennae, 1.5 m(2) each. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:879 / 883
页数:5
相关论文
共 8 条
[1]   Preliminary results and lessons learned from upgrading the Tore Supra actively cooled plasma facing components (CIEL project) [J].
Cordier, JJ .
FUSION ENGINEERING AND DESIGN, 2003, 66-68 :59-67
[2]   Actively cooled plasma facing components in Tore Supra [J].
Garin, P .
FUSION ENGINEERING AND DESIGN, 2001, 56-57 :117-123
[3]  
*JET TEAM, 1994, IAEACN60A13
[4]   Long sustainment of JT-60U plasmas with high integrated performance [J].
Kamada, Y ;
Isayama, A ;
Oikawa, T ;
Sakamoto, Y ;
Hosogane, N ;
Takenaga, H ;
Kusama, Y ;
Fujita, T ;
Takeji, S ;
Ozeki, T ;
Ishii, Y ;
Tokuda, S ;
Ushigusa, K ;
Naito, O ;
Ishida, S ;
Koide, Y ;
Fukuda, T ;
Takizuka, T ;
Shirai, H ;
Hatae, T .
NUCLEAR FUSION, 1999, 39 (11Y) :1845-1853
[5]   Development and testing of diagnostic windows for Tore Supra/CIEL and ITER [J].
Lipa, M ;
Portafaix, C ;
Pluyette, E ;
Walker, C ;
Lochet, N .
FUSION ENGINEERING AND DESIGN, 2002, 61-62 :801-806
[6]   Heat flux deposition on plasma-facing components using a convective model with ripple and Shafranov shift [J].
Mitteau, R ;
Moal, A ;
Schlosser, J ;
Guilhem, D .
JOURNAL OF NUCLEAR MATERIALS, 1999, 266 :798-803
[7]   Surface temperature measurements on Tokamak target plates with two types of infra red [J].
Reichle, R ;
Pocheau, C ;
Delchambre, E ;
Ducobu, L ;
Faisse, F ;
Guilhem, D ;
Jouve, M ;
Moulin, D ;
Roche, H ;
Thomas, E .
JOURNAL OF NUCLEAR MATERIALS, 2003, 313 :711-715
[8]   Static and dynamic properties of wall recycling in TRIAM-1M [J].
Sakamoto, M ;
Nakashima, H ;
Kawasaki, S ;
Iyomasa, A ;
Kulkarni, SV ;
Hasegawa, M ;
Jotaki, E ;
Zushi, H ;
Nakamura, K ;
Hanada, K ;
Itoh, S .
JOURNAL OF NUCLEAR MATERIALS, 2003, 313 :519-523