Quantifying the effect of metal-rich precipitates on minority carrier diffusion length in multicrystalline silicon using synchrotron-based spectrally resolved x-ray beam-induced current

被引:22
作者
Buonassisi, T
Istratov, AA [1 ]
Pickett, MD
Marcus, MA
Hahn, G
Riepe, S
Isenberg, J
Warta, W
Willeke, G
Ciszek, TF
Weber, ER
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Konstanz, Dept Phys, D-78457 Constance, Germany
[4] Fraunhofer Inst Solar Energy Syst, D-79110 Freiburg, Germany
[5] Natl Renewable Energy Lab, Golden, CO USA
关键词
D O I
10.1063/1.1997274
中图分类号
O59 [应用物理学];
学科分类号
摘要
Synchrotron-based, spectrally resolved x-ray beam-induced current (SR-XBIC) is introduced as a technique to locally measure the minority carrier diffusion length in semiconductor devices. Equivalence with well-established diffusion length measurement techniques is demonstrated. The strength of SR-XBIC is that it can be combined in situ with other synchrotron-based analytical techniques, such as x-ray fluorescence microscopy (mu-XRF) and x-ray absorption microspectroscopy (mu-XAS), yielding information about the distribution, elemental composition, chemical nature, and effect on minority carrier diffusion length of individual transition metal species in multicrystalline silicon. SR-XBIC, mu-XRF, and mu-XAS measurements were performed on intentionally contaminated multicrystalline silicon, revealing a strong correlation between local concentrations of copper and nickel silicide precipitates and a decrease of minority carrier diffusion length. In addition, the reduction of minority carrier diffusion length due to submicron-sized Cu3Si and NiSi2 precipitates could be decoupled from the influence of homogeneously distributed nanoprecipitates and point defects. (c) 2005 American Institute of Physics.
引用
收藏
页数:3
相关论文
共 16 条
[1]   NUMERICAL MODELING OF TEXTURED SILICON SOLAR-CELLS USING PC-1D [J].
BASORE, PA .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1990, 37 (02) :337-343
[2]   Analysis of copper-rich precipitates in silicon: Chemical state, gettering, and impact on multicrystalline silicon solar cell material [J].
Buonassisi, T ;
Marcus, MA ;
Istratov, AA ;
Heuer, M ;
Ciszek, TF ;
Lai, B ;
Cai, ZH ;
Weber, ER .
JOURNAL OF APPLIED PHYSICS, 2005, 97 (06)
[3]   Observation of transition metals at shunt locations in multicrystalline silicon solar cells [J].
Buonassisi, T ;
Vyvenko, OF ;
Istratov, AA ;
Weber, ER ;
Hahn, G ;
Sontag, D ;
Rakotoniaina, JP ;
Breitenstein, O ;
Isenberg, J ;
Schindler, R .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (03) :1556-1561
[4]   Silicon defect and impurity studies using float-zone crystal growth as a tool [J].
Ciszek, TF ;
Wang, TH .
JOURNAL OF CRYSTAL GROWTH, 2002, 237 (1-4 III) :1685-1691
[5]  
Green M. A., 1995, SILICON SOLAR CELLS
[6]   X-RAY INTERACTIONS - PHOTOABSORPTION, SCATTERING, TRANSMISSION, AND REFLECTION AT E=50-30,000 EV, Z=1-92 [J].
HENKE, BL ;
GULLIKSON, EM ;
DAVIS, JC .
ATOMIC DATA AND NUCLEAR DATA TABLES, 1993, 54 (02) :181-342
[7]  
Hieslmair H., 2000, Proc. 10th NREL Workshop on Crystalline Silicon Solar Cell Materials and Processes, P162
[8]   NONCONTACT MAPPING OF HEAVY-METAL CONTAMINATION FOR SILICON IC FABRICATION [J].
LAGOWSKI, J ;
EDELMAN, P ;
DEXTER, M ;
HENLEY, W .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1992, 7 (1A) :A185-A192
[9]   Iron detection in crystalline silicon by carrier lifetime measurements for arbitrary injection and doping [J].
Macdonald, DH ;
Geerligs, LJ ;
Azzizi, A .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (03) :1021-1028
[10]   Beamline 10.3.2 at ALS: a hard X-ray microprobe for environmental and materials sciences [J].
Marcus, MA ;
MacDowell, AA ;
Celestre, R ;
Manceau, A ;
Miller, T ;
Padmore, HA ;
Sublett, RE .
JOURNAL OF SYNCHROTRON RADIATION, 2004, 11 :239-247