High-Performance Graphene-Based Transparent Flexible Heaters

被引:483
作者
Kang, Junmo [1 ,2 ]
Kim, Hyeongkeun [5 ]
Kim, Keun Soo [6 ,7 ]
Lee, Seoung-Ki [3 ]
Bae, Sukang [1 ,2 ]
Ahn, Jong-Hyun [1 ,2 ,3 ]
Kim, Young-Jin [1 ,2 ,4 ]
Choi, Jae-Boong [1 ,2 ,4 ]
Hong, Byung Hee [1 ,2 ,8 ]
机构
[1] Sungkyunkwan Univ, SKKU Adv Inst Nanotechnol SAINT, Suwon 440746, South Korea
[2] Sungkyunkwan Univ, Ctr Human Interface Nano Technol HINT, Suwon 440746, South Korea
[3] Sungkyunkwan Univ, Sch Adv Mat Sci & Engn, Suwon 440746, South Korea
[4] Sungkyunkwan Univ, Sch Mech Engn, Suwon 440746, South Korea
[5] KETI, Elect Mat & Device Res Ctr, Songnam 432816, South Korea
[6] Sejong Univ, Dept Phys, Seoul 143747, South Korea
[7] Sejong Univ, Graphene Res Inst, Seoul 143747, South Korea
[8] Seoul Natl Univ, Dept Chem, Seoul 151742, South Korea
基金
新加坡国家研究基金会;
关键词
Graphene; transparent; flexible; heater; chemical vapor deposition; layer-by-layer doping; CHEMICAL-VAPOR-DEPOSITION; LAYER GRAPHENE; LARGE-AREA; FILMS;
D O I
10.1021/nl202311v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We demonstrate high-performance, flexible, transparent heaters based on large-scale graphene films synthesized by chemical vapor deposition on Cu foils. After multiple transfers and chemical doping processes, the graphene films show sheet resistance as low as similar to 43 Olun/sq with similar to 89% optical transmittance, which are ideal as low-voltage transparent heaters. Time-dependent temperature profiles and heat distribution analyses show that the performance of graphene-based heaters is superior to that of conventional transparent heaters based on indium tin oxide. In addition, we confirmed that mechanical strain as high as similar to 4% did not substantially affect heater performance. Therefore, graphene-based, flexible, transparent heaters are expected to find uses in a broad range of applications, including automobile defogging/deicing systems and heatable smart windows.
引用
收藏
页码:5154 / 5158
页数:5
相关论文
共 24 条
[1]  
ALDER RF, 2002, Patent No. 63581382002
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[4]  
Balandin AA, 2011, NAT MATER, V10, P569, DOI [10.1038/nmat3064, 10.1038/NMAT3064]
[5]  
BELTON CG, 2006, Patent No. 16125252006
[6]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/nphoton.2010.186, 10.1038/NPHOTON.2010.186]
[7]  
BOUTEN PCP, 2002, J SOC INF DISPLAY, P313
[8]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[9]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191