Hallmarks of Cancer: The Next Generation

被引:48104
作者
Hanahan, Douglas [1 ,2 ]
Weinberg, Robert A. [3 ,4 ]
机构
[1] Ecole Polytech Fed Lausanne, Swiss Inst Expt Canc Res, Sch Life Sci, CH-1015 Lausanne, Switzerland
[2] UCSF, Dept Biochem & Biophys, San Francisco, CA 94158 USA
[3] Ludwig MIT Ctr Mol Oncol, Whitehead Inst Biomed Res, Cambridge, MA 02142 USA
[4] MIT Dept Biol, Cambridge, MA 02142 USA
关键词
EPITHELIAL-MESENCHYMAL TRANSITION; DNA-DAMAGE RESPONSE; DOUBLE-EDGED-SWORD; STEM-CELLS; TGF-BETA; TUMOR PROGRESSION; TELOMERE LENGTH; ENDOGENOUS INHIBITORS; LINKING INFLAMMATION; CELLULAR SENESCENCE;
D O I
10.1016/j.cell.2011.02.013
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The hallmarks of cancer comprise six biological capabilities acquired during the multistep development of human tumors. The hallmarks constitute an organizing principle for rationalizing the complexities of neoplastic disease. They include sustaining proliferative signaling, evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis. Underlying these hallmarks are genome instability, which generates the genetic diversity that expedites their acquisition, and inflammation, which fosters multiple hallmark functions. Conceptual progress in the last decade has added two emerging hallmarks of potential generality to this list-reprogramming of energy metabolism and evading immune destruction. In addition to cancer cells, tumors exhibit another dimension of complexity: they contain a repertoire of recruited, ostensibly normal cells that contribute to the acquisition of hallmark traits by creating the "tumor microenvironment." Recognition of the widespread applicability of these concepts will increasingly affect the development of new means to treat human cancer.
引用
收藏
页码:646 / 674
页数:29
相关论文
共 246 条
  • [1] The Bcl-2 apoptotic switch in cancer development and therapy
    Adams, J. M.
    Cory, S.
    [J]. ONCOGENE, 2007, 26 (09) : 1324 - 1337
  • [2] Models, mechanisms and clinical evidence for cancer dormancy
    Aguirre-Ghiso, Julio A.
    [J]. NATURE REVIEWS CANCER, 2007, 7 (11) : 834 - 846
  • [3] Ahmed Zubair, 2009, V467, P3, DOI 10.1007/978-1-59745-241-0_1
  • [4] Prospective identification of tumorigenic breast cancer cells
    Al-Hajj, M
    Wicha, MS
    Benito-Hernandez, A
    Morrison, SJ
    Clarke, MF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (07) : 3983 - 3988
  • [5] AMARAVADI RK, 2007, NAT GENET, V39, P503
  • [6] Autophagy-A double-edged sword in oncology
    Apel, Anja
    Zentgraf, Hanswalter
    Buechler, Markus W.
    Herr, Ingrid
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2009, 125 (05) : 991 - 995
  • [7] Mice without telomerase: what can they teach us about human cancer?
    Artandi, SE
    DePinho, RA
    [J]. NATURE MEDICINE, 2000, 6 (08) : 852 - 855
  • [8] Telomeres and telomerase in cancer
    Artandi, Steven E.
    DePinho, Ronald A.
    [J]. CARCINOGENESIS, 2010, 31 (01) : 9 - 18
  • [9] Mechanisms of resistance to antiangiogenesis therapy
    Azam, Faisal
    Mehta, Shaveta
    Harris, Adrian L.
    [J]. EUROPEAN JOURNAL OF CANCER, 2010, 46 (08) : 1323 - 1332
  • [10] The angiogenic switch in carcinogenesis
    Baeriswyl, Vanessa
    Christofori, Gerhard
    [J]. SEMINARS IN CANCER BIOLOGY, 2009, 19 (05) : 329 - 337